ABSOLUTELY CONVERGENT MULTIPLE FOURIER SERIES AND MULTIPLICATIVE LIPSCHITZ CLASSES OF FUNCTIONS

被引:9
作者
Moricz, Ferenc
机构
[1] Bolyai Institute, University of Szeged, Szeged
关键词
multiple Fourier series; absolute convergence; multiple difference operator of first order in each variable; multiplicative Lipschitz classes Lip (alpha(1; .; alpha(N)) and lip (alpha(1; alpha(N));
D O I
10.1007/s10474-008-7164-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider N-multiple trigonometric series whose complex coefficients c(j1), .... , j(N) , (j(1), ... , j(N)) is an element of Z(N) , form an absolutely convergent series. Then the series Sigma((j1 , ... , jN)is an element of ZN) c(j1 , ... , jN) e(i(j1x1 + ... + jNxN)) =: f(x(1) , ... , x(N)) converges uniformly in Pringsheim's sense, and consequently, it, is the multiple Fourier series of its sum f, which is continuous on the N-dimensional torus T-N, T := [-pi, pi). We give sufficient conditions in terms of the coefficients in order that f belong to one of the multiplicative Lipschitz classes Lip (alpha(1) , ... , alpha(N)) and lip (alpha(1) , ... , alpha(N)) for some alpha(l) , ... , alpha(N) > 0. These multiplicative Lipschitz classes of functions are defined in terms of the multiple difference operator of first order ill each variable. The conditions given by us are not only sufficient, but also necessary for a special subclass of coefficients. Our auxiliary results oil the equivalence between the order of magnitude of the rectangular partial sums and that of the rectangular remaining sums of related N-multiple numerical series may be useful in other investigations, too.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
[31]   On absolute convergence of multiple fourier series [J].
Vyas, R. G. ;
Darji, K. N. .
MATHEMATICAL NOTES, 2013, 94 (1-2) :71-81
[32]   On the absolute convergence of multiple fourier series [J].
Ferenc Móricz ;
Antal Veres .
Acta Mathematica Hungarica, 2007, 117 :275-292
[33]   On absolute convergence of multiple fourier series [J].
R. G. Vyas ;
K. N. Darji .
Mathematical Notes, 2013, 94 :71-81
[34]   On the almost everywhere convergence of multiple Fourier series of square summable functions [J].
Goginava, Ushangi ;
Oniani, Giorgi .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 97 (3-4) :313-320
[35]   On the Asymptotic Behavior of the Remainder of a Dirichlet Series Absolutely Convergent in a Half-Plane [J].
L. Ya. Mykytyuk ;
M. M. Sheremeta .
Ukrainian Mathematical Journal, 2003, 55 (3) :456-467
[36]   Absolute Convergence of Single and Double Fourier Series on Multiplicative Systems [J].
Volosivets, S. S. .
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2009, 9 (03) :7-14
[37]   On the generalized β-absolute convergence of single and multiple Fourier series [J].
Darji, Kiran N. .
ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2023, 27 (02) :171-184
[38]   Convergence of double Fourier series and W-classes [J].
Dyachenko, MI ;
Waterman, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (01) :397-407
[39]   On the Fourier transform of functions from the classes Hpa (R) [J].
Platonov, S. S. .
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2021, 14 (04) :593-608
[40]   Divergence almost everywhere of rectangular partial sums of multiple Fourier series of bounded functions [J].
Galstyan, SS ;
Karagulyan, GA .
MATHEMATICAL NOTES, 1998, 64 (1-2) :20-30