From von Neumann to Wigner and beyond

被引:3
作者
Ben-Benjamin, J. S. [1 ]
Cohen, L. [2 ,3 ]
Scully, M. O. [1 ,4 ,5 ]
机构
[1] Texas A&M Univ, Inst Quantum Sci & Engn, College Stn, TX 77843 USA
[2] CUNY Hunter Coll, New York, NY 10021 USA
[3] CUNY, Grad Ctr, New York, NY USA
[4] Baylor Univ, Waco, TX 76798 USA
[5] Princeton Univ, Princeton, NJ 08544 USA
关键词
TIME-FREQUENCY REPRESENTATIONS;
D O I
10.1140/epjst/e2018-800063-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Historically, correspondence rules and quantum quasi-distributions were motivated by classical mechanics as a guide for obtaining quantum operators and quantum corrections to classical results. In this paper, we start with quantum mechanics and show how to derive the infinite number of quantum quasi-distributions and corresponding c-functions. An interesting aspect of our approach is that it shows how the c-numbers of position and momentum arise from the quantum operator.
引用
收藏
页码:2171 / 2182
页数:12
相关论文
共 23 条
[1]  
[Anonymous], 1928, The Theory of Groups and Quantum Mechanics
[2]   Working in phase-space with Wigner and Weyl [J].
Ben-Benjamin, Jonathan S. ;
Kim, Moochan B. ;
Schleich, Wolfgang P. ;
Case, William B. ;
Cohen, Leon .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2017, 65 (6-8)
[3]  
Born M., 1925, Zeitschrift fur Physik, V34, P858, DOI 10.1007/BF01328531
[4]   IMPROVED TIME-FREQUENCY REPRESENTATION OF MULTICOMPONENT SIGNALS USING EXPONENTIAL KERNELS [J].
CHOI, HI ;
WILLIAMS, WJ .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1989, 37 (06) :862-871
[5]  
CLAASEN TACM, 1980, PHILIPS J RES, V35, P372
[6]  
Cohen L, 2004, J MOD OPTIC, V51, P2761, DOI [10.1080/09500340408231835, 10.1080/09500340412331285028]
[7]   GENERALIZED PHASE-SPACE DISTRIBUTION FUNCTIONS [J].
COHEN, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1966, 7 (05) :781-&
[8]   JOINT WIGNER DISTRIBUTION FOR SPIN-1/2 PARTICLES [J].
COHEN, L ;
SCULLY, MO .
FOUNDATIONS OF PHYSICS, 1986, 16 (04) :295-310
[9]  
Cohen L., 1995, TIME FREQUENCY ANAL
[10]  
Cohen L., 2013, The Weyl Operator and Its Generalization, DOI DOI 10.1007/978-3-0348-0294-9