Self-verifying variational quantum simulation of lattice models

被引:474
作者
Kokail, C. [1 ,2 ,3 ]
Maier, C. [1 ,2 ,3 ]
van Bijnen, R. [1 ,2 ,3 ]
Brydges, T. [1 ,2 ,3 ]
Joshi, M. K. [3 ]
Jurcevic, P. [1 ,2 ,3 ]
Muschik, C. A. [1 ,2 ,3 ]
Silvi, P. [1 ,2 ,3 ]
Blatt, R. [1 ,2 ,3 ]
Roos, C. F. [1 ,2 ,3 ]
Zoller, P. [1 ,2 ,3 ]
机构
[1] Univ Innsbruck, Ctr Quantum Phys, Innsbruck, Austria
[2] Univ Innsbruck, Inst Expt Phys, Innsbruck, Austria
[3] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, Innsbruck, Austria
基金
欧洲研究理事会;
关键词
MASSIVE SCHWINGER MODEL; PROPAGATION; DYNAMICS; ATOMS; FIELD;
D O I
10.1038/s41586-019-1177-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hybrid classical-quantum algorithms aim to variationally solve optimization problems using a feedback loop between a classical computer and a quantum co-processor, while benefiting from quantum resources. Here we present experiments that demonstrate self-verifying, hybrid, variational quantum simulation of lattice models in condensed matter and high-energy physics. In contrast to analogue quantum simulation, this approach forgoes the requirement of realizing the targeted Hamiltonian directly in the laboratory, thus enabling the study of a wide variety of previously intractable target models. We focus on the lattice Schwinger model, a gauge theory of one-dimensional quantum electrodynamics. Our quantum co-processor is a programmable, trapped-ion analogue quantum simulator with up to 20 qubits, capable of generating families of entangled trial states respecting the symmetries of the target Hamiltonian. We determine ground states, energy gaps and additionally, by measuring variances of the Schwinger Hamiltonian, we provide algorithmic errors for the energies, thus taking a step towards verifying quantum simulation.
引用
收藏
页码:355 / +
页数:14
相关论文
共 63 条
[1]  
[Anonymous], 2014, MITCTP4610
[2]  
[Anonymous], 2004, Optimization Online
[3]   The mass spectrum of the Schwinger model with matrix product states [J].
Banuls, M. C. ;
Cichy, K. ;
Cirac, J. I. ;
Jansen, K. .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11)
[4]  
Banuls M. C., 2013, P SCI, V332
[5]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[6]  
Blatt R, 2012, NAT PHYS, V8, P277, DOI [10.1038/nphys2252, 10.1038/NPHYS2252]
[7]   Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins [J].
Britton, Joseph W. ;
Sawyer, Brian C. ;
Keith, Adam C. ;
Wang, C. -C. Joseph ;
Freericks, James K. ;
Uys, Hermann ;
Biercuk, Michael J. ;
Bollinger, John J. .
NATURE, 2012, 484 (7395) :489-492
[8]   Probing Renyi entanglement entropy via randomized measurements [J].
Brydges, Tiff ;
Elben, Andreas ;
Jurcevic, Petar ;
Vermersch, Benoit ;
Maier, Christine ;
Lanyon, Ben P. ;
Zoller, Peter ;
Blatt, Rainer ;
Roos, Christian F. .
SCIENCE, 2019, 364 (6437) :260-+
[9]   Finite-representation approximation of lattice gauge theories at the continuum limit with tensor networks [J].
Buyens, Boye ;
Montangero, Simone ;
Haegeman, Jutho ;
Verstraete, Frank ;
Van Acoleyen, Karel .
PHYSICAL REVIEW D, 2017, 95 (09)
[10]   Density matrix renormalisation group approach to the massive Schwinger model [J].
Byrnes, TMR ;
Sriganesh, P ;
Bursill, RJ ;
Hamer, CJ .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 109 :202-206