Directed self-assembly of block copolymers

被引:8
|
作者
Takenaka, Mikihito [1 ]
Hasegawa, Hirokazu [1 ]
机构
[1] Kyoto Univ, Grad Sch Engn, Dept Polymer Chem, Nishikyo Ku, Kyoto 6158510, Japan
关键词
LONG-RANGE ORDER; DENSITY MULTIPLICATION; PATTERNS; GRAPHOEPITAXY; FABRICATION; CYLINDER; ARRAYS; MEDIA; FILMS; NANOSTRUCTURES;
D O I
10.1016/j.coche.2012.10.008
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Block copolymers in the strong segregation regime self-assemble to form regular periodic nanopatterns that are applicable as templates for nanofabrication or nanoprocessing such as etching masks for nanolithography. However, self-assembly of block copolymers alone usually results in poly-grain structures. Directed self-assembly is an excellent technique developed rapidly in the past decade. Directed self-assembly either by graphoepitaxy with topographical guides or chemical registration with chemically pattered surfaces enabled us to control orientation and alignment of block copolymer microdomains in thin film on a substrate. It is expected that this technique will further extend the resolution limit of the conventional photolithography. This article briefly review the directed self-assembly techniques.
引用
收藏
页码:88 / 94
页数:7
相关论文
共 50 条
  • [21] Inverse Design of Topographical Templates for Directed Self-Assembly of Block Copolymers
    Hannon, Adam F.
    Gotrik, Kevin W.
    Ross, Caroline A.
    Alexander-Katz, Alfredo
    ACS MACRO LETTERS, 2013, 2 (03) : 251 - 255
  • [22] Square patterns formed from the directed self-assembly of block copolymers
    Li, Weihua
    Gu, Xueying
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2021, 6 (05) : 355 - 367
  • [23] Thermal scanning probe lithography for the directed self-assembly of block copolymers
    Gottlieb, S.
    Lorenzoni, M.
    Evangelio, L.
    Fernandez-Regulez, M.
    Ryu, Y. K.
    Rawlings, C.
    Spieser, M.
    Knoll, A. W.
    Perez-Murano, F.
    NANOTECHNOLOGY, 2017, 28 (17)
  • [24] Directed self-assembly of block copolymers on chemical patterns: A platform for nanofabrication
    Ji, Shengxiang
    Wan, Lei
    Liu, Chi-Chun
    Nealey, Paul F.
    PROGRESS IN POLYMER SCIENCE, 2016, 54-55 : 76 - 127
  • [25] Directed self-assembly of silicon-containing block copolymers for lithography
    Maher, Michael
    Rettner, Charles
    Bates, Christopher
    Blachut, Gregory
    Carlson, Matthew
    Durand, William
    Cheng, Joy
    Sanders, Daniel
    Ellison, Christopher
    Willson, Carlton
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [26] Deterministically Isolated Gratings through the Directed Self-Assembly of Block Copolymers
    Doerk, Gregory S.
    Cheng, Joy Y.
    Rettner, Charles T.
    Balakrishnan, Srinivasan
    Arellano, Noel
    Sanders, Daniel P.
    ALTERNATIVE LITHOGRAPHIC TECHNOLOGIES V, 2013, 8680
  • [27] Kinetics of directed self-assembly of block copolymers on chemically patterned substrates
    Mueller, Marcus
    Li, Weihua
    Rey, Juan Carlos Orozco
    Welling, Ulrich
    XXVI IUPAP CONFERENCE ON COMPUTATIONAL PHYSICS (CCP2014), 2015, 640
  • [28] Tuning the strength of chemical patterns for directed self-assembly of block copolymers
    Williamson, Lance
    Lin, Guanyang
    Cao, Yi
    Gronheid, Roel
    Nealey, Paul
    ALTERNATIVE LITHOGRAPHIC TECHNOLOGIES VI, 2014, 9049
  • [29] Directing the self-assembly of block copolymers
    Darling, S. B.
    PROGRESS IN POLYMER SCIENCE, 2007, 32 (10) : 1152 - 1204
  • [30] Discrete Block Copolymers for Self-Assembly
    Zhang, Wei
    ACS CENTRAL SCIENCE, 2020, 6 (08) : 1278 - 1280