On asymptotic structure, the Szlenk index and UKK properties in Banach spaces

被引:61
作者
Knaust, H [1 ]
Odell, E
Schlumprecht, T
机构
[1] Univ Texas, Dept Math Sci, El Paso, TX 79968 USA
[2] Univ Texas, Dept Math, Austin, TX 78712 USA
[3] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
asymptotic structure; Szlenk index; uniform Kadec-Klee property;
D O I
10.1023/A:1009786603119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B be a separable Banach space and let X = B* be separable. We prove that if B has finite Szlenk index (for all epsilon > 0) then B can be renormed to have the weak* uniform Kadec-Klee property. Thus if epsilon > 0 there exists delta (epsilon) > 0 so that if (x(n)) is a sequence in the ball of X converging omega* to x so that lim inf(n -->infinity) parallel to x(n)-x parallel to greater than or equal to epsilon then parallel to x parallel to less than or equal to 1-delta (epsilon). In addition we show that the norm can be chosen so that delta (epsilon) greater than or equal to c epsilon(p) for some p < infinity and c > 0.
引用
收藏
页码:173 / 199
页数:27
相关论文
共 27 条
[1]  
ALSPACH D, UNPUB SZLENK INDEX L
[2]  
CHAATIT F, 1996, MATH JPN, V43, P357
[3]  
Davis W. J., 1974, Journal of Functional Analysis, V17, P311, DOI 10.1016/0022-1236(74)90044-5
[4]  
DILWORTH SJ, 1995, STUD MATH, V112, P267
[5]   NEW PROOF THAT ANALYTIC SETS ARE RAMSEY [J].
ELLENTUCK, E .
JOURNAL OF SYMBOLIC LOGIC, 1974, 39 (01) :163-165
[6]  
Enflo P., 1969, ARK MATH, V8, P107
[7]  
FIGIEL T, 1974, COMPOS MATH, V29, P179
[8]  
Godefroy G., PREPRINT
[9]  
HAYDON R, 1991, LECT NOTES MATH, V1470, P1
[10]  
Huff R., 1980, Rocky Mt. J. Math., V10, P743