Non-universality of the Riemann zeta function and its derivatives when σ ≥ 1

被引:0
作者
Nagoshi, Hirofumi [1 ,2 ]
Nakamura, Takashi [1 ,2 ]
机构
[1] Gunma Univ, Fac Sci & Technol, Kiryu, Gunma 3768515, Japan
[2] Tokyo Univ Sci, Fac Sci & Technol, Dept Liberal Arts, 2641 Yamazaki, Noda, Chiba 2788510, Japan
关键词
The Riemann zeta function; Universality;
D O I
10.1016/j.jat.2019.01.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let zeta (s) be the Riemann zeta function. In 1911, Bohr showed that the set {zeta (sigma + i tau) : sigma > 1, tau is an element of R} is dense in C. By Voronin's denseness theorems in 1972, the sets {(zeta(sigma + i lambda(1) +i tau), ..., + zeta(sigma + i lambda(n) +i tau)) sigma >= 1,tau is an element of R} with distinct lambda(1), ..., lambda(n) is an element of R and {(zeta(sigma + i tau),zeta'(sigma +i tau), ..., zeta((n-1))(sigma + i tau)) : sigma >= 1, tau is an element of R} are dense in C-n. By Voronin's universality theorem, for any fixed 1/2 < sigma < 1 and any non-negative integer k, the set {zeta((k))(sigma,tau): tau is an element of R} is dense in C[a, b], where zeta((k))(sigma,tau) (t) := zeta((k))(sigma+ it + i tau), t is an element of [a, b]. In the present paper, we prove that the set {zeta((k))(sigma,tau) : sigma >= 1, tau is an element of R} boolean AND C[a, b] is not dense in C [a, b]. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:57 / 62
页数:6
相关论文
共 17 条
[1]  
Andersson J., 2009, BER MATH, P7
[2]  
Bagchi B., 1981, THESIS
[3]  
Bohr H, 1914, J REINE ANGEW MATH, V144, P249
[4]   On the number distribution of Riemann's zeta functions [J].
Bohr, H ;
Jessen, B .
ACTA MATHEMATICA, 1930, 54 (01) :1-35
[5]  
Bohr H., 1911, Nachr. Akad. Wiss. Gottingen II Math. Phys. Kl, P409
[6]  
Herichi H., 2014, Annales de la Faculte des Sciences de Toulouse, V23, P621
[7]   Distribution functions and the Riemann zeta function [J].
Jessen, Borge ;
Wintner, Aurel .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1935, 38 (1-3) :48-88
[8]  
Karatsuba A.A., 1992, DEGRUYTER EXPOSITION, V5
[9]  
Kowalski E., 2015, ETH ZURICH LECT NOTE
[10]  
Laurincikas A., 1996, MATH APPL DORDR, V352