REGULARITY FOR THE AXISYMMETRIC NAVIER-STOKES EQUATIONS

被引:0
作者
Wang, Peng [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
关键词
Navier-Stokes equations; axi-symmetric flow; regularity criterion; AXIALLY-SYMMETRIC FLOWS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we establish a regularity criterion for the Navier-Stokes system with axisymmetric initial data. It is proved that if the local axisymmetric smooth solution u satisfies parallel to u(theta)parallel to(L alpha(0,T;L beta)) < infinity, where 2/alpha broken vertical bar 3/beta <= 1, and 3 < beta <= infinity, then the strong solution keeps smoothness up to time T.
引用
收藏
页数:9
相关论文
共 14 条
[1]   A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics [J].
Badiale, M ;
Tarantello, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 163 (04) :259-293
[2]   On the regularity of the axisymmetric solutions of the Navier-Stokes equations [J].
Chae, D ;
Lee, J .
MATHEMATISCHE ZEITSCHRIFT, 2002, 239 (04) :645-671
[3]  
Chen H., ARXIV150500905MATHAP
[4]  
Constantin P., 1988, Chicago Lectures in Mathematics
[5]  
Fefferman CL., 2006, The Millennium Prize Problems, VThe millennium Prize Problems, P57
[6]  
Leonardi S, 1999, Z ANAL ANWEND, V18, P639
[7]  
Majda AJ., 2002, Cambridge Texts Appl. Math., V27
[8]   Global well-posedness for axisymmetric Boussinesq system with horizontal viscosity [J].
Miao, Changxing ;
Zheng, Xiaoxin .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (06) :842-872
[9]  
Neustupa J., 2001, Math. Bohem, V126, P469, DOI DOI 10.21136/MB.2001.134015
[10]  
UKHOVSKII MR, 1968, PMM-J APPL MATH MEC, V32, P52, DOI DOI 10.1016/0021-8928(68)90147-0