REGULARITY FOR THE AXISYMMETRIC NAVIER-STOKES EQUATIONS

被引:0
作者
Wang, Peng [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
关键词
Navier-Stokes equations; axi-symmetric flow; regularity criterion; AXIALLY-SYMMETRIC FLOWS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we establish a regularity criterion for the Navier-Stokes system with axisymmetric initial data. It is proved that if the local axisymmetric smooth solution u satisfies parallel to u(theta)parallel to(L alpha(0,T;L beta)) < infinity, where 2/alpha broken vertical bar 3/beta <= 1, and 3 < beta <= infinity, then the strong solution keeps smoothness up to time T.
引用
收藏
页数:9
相关论文
共 14 条
  • [1] A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics
    Badiale, M
    Tarantello, G
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 163 (04) : 259 - 293
  • [2] On the regularity of the axisymmetric solutions of the Navier-Stokes equations
    Chae, D
    Lee, J
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2002, 239 (04) : 645 - 671
  • [3] Chen H., ARXIV150500905MATHAP
  • [4] Constantin P., 1988, Chicago Lectures in Mathematics
  • [5] Fefferman CL., 2006, The Millennium Prize Problems, VThe millennium Prize Problems, P57
  • [6] Leonardi S, 1999, Z ANAL ANWEND, V18, P639
  • [7] Majda AJ., 2002, Cambridge Texts Appl. Math., V27
  • [8] Global well-posedness for axisymmetric Boussinesq system with horizontal viscosity
    Miao, Changxing
    Zheng, Xiaoxin
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (06): : 842 - 872
  • [9] Neustupa J., 2001, Math. Bohem, V126, P469, DOI DOI 10.21136/MB.2001.134015
  • [10] UKHOVSKII MR, 1968, PMM-J APPL MATH MEC, V32, P52, DOI DOI 10.1016/0021-8928(68)90147-0