Two different cyclooxygenases (COXs) are functional in mammals: COX-1 and COX-2. COX-2 is mainly an inducible isoform. that shares significant features with inducible nitric oxide synthase (iNOS) in terms of its tissue distribution and participation in pathophysiological phenomena. Furthermore, the product of iNOS catalysis, nitric oxide (NO), is an important regulator of COX-2 activity and expression, and the products of COX-1 and COX-2 (diverse prostanoids) may also influence iNOS expression. Both positive and negative effects of NO on COX-2 expression have been encountered in experimental systems, showing that the outcome of the NO-COX-2 interaction is exquisitely dependent upon the temporal frame and the cell type studied. The pathophysiological significance of NO-COX cross-talk also arises from in vivo studies, in which most evidence points to a positive effect of NO on COX-2 activity and/or expression. This emphasizes the need to understand the underlying mechanisms. Among these, the capacity of NO and its effector cyclic GMP to modulate the function of several target proteins, including transcription factors such as nuclear factor-kappaB and activator protein-1, appears as the key pathway by which NO may regulate COX-2 expression. Given the capacity of some prostanoids to modulate the inflammatory response, the interplay between NO synthase and COX pathways stands at the center of the pathophysiological basis of inflammatory diseases.