On positive solutions concentrating on spheres for the Gierer-Meinhardt system

被引:78
作者
Ni, WM [1 ]
Wei, JC
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
layered solutions; Gierer-Meinhardt system; pattern fortnation; singular perturbations;
D O I
10.1016/j.jde.2005.03.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the stationary Gierer-Meinhardt system in a ball of RN: [GRAPHICS] where Omega = B-R is a ball of R-N (N >= 2) with radius R, epsilon > 0 is a small parameter, and p, q, m, s satisfy the following condition: [GRAPHICS] We construct positive solutions which concentrate on a (N - 1)-dimensional sphere for this system for all sufficiently small E. More precisely, under some conditions on the exponents (p, q) and the radius R, it is proved the above problem has a radially symmetric positive solution (u(epsilon), v epsilon) with the property that u(epsilon)(r) -> 0 in Omega\{r not equal r(0)) for some r(0) epsilon (0, R). Existence of bound states in the whole RN is also established. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:158 / 189
页数:32
相关论文
共 39 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F
[2]   THE ROLE OF THE MEAN-CURVATURE IN SEMILINEAR NEUMANN PROBLEM INVOLVING CRITICAL EXPONENT [J].
ADIMURTHI ;
MANCINI, G ;
YADAVA, SL .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (3-4) :591-631
[3]  
ADIMURTHI, 1993, J FUNCT ANAL, V113, P318
[4]   Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, part II [J].
Ambrosetti, A ;
Malchiodi, A ;
Ni, WM .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (02) :297-329
[5]   Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, part I [J].
Ambrosetti, A ;
Malchiodi, A ;
Ni, WM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (03) :427-466
[6]  
[Anonymous], 1995, JPN J IND APPL MATH
[7]  
Bates P., 1999, ADV DIFFERENTIAL EQU, V4, P1
[8]   Multipeak solutions for a singularly perturbed Neumann problem [J].
Dancer, EN ;
Yan, SS .
PACIFIC JOURNAL OF MATHEMATICS, 1999, 189 (02) :241-262
[9]   Multi-bump ground states of the Gierer-Meinhardt system in R2 [J].
Del Pino, M ;
Kowalczyk, M ;
Wei, JC .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (01) :53-85
[10]   The Gierer & Meinhardt system: The breaking of homoclinics and multi-bump ground states [J].
del Pino, M ;
Kowalczyk, M ;
Chen, XF .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (03) :419-439