The study of fixed points for multivalued mappings in a Menger probabilistic metric space endowed with a graph

被引:3
作者
Argoubi, Hajer [1 ]
Jleli, Mohamed [2 ]
Samet, Bessem [2 ]
机构
[1] FST, Tunis 2092, Tunisia
[2] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
关键词
fixed point; multivalued mapping; Menger probabilistic metric; directed graph; modified q-Bernstein operator; PARTIALLY ORDERED SETS; GENERALIZED CONTRACTIONS; THEOREMS;
D O I
10.1186/s13663-015-0361-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of fixed points for multivalued mappings f:S -> S,where ( S,F,T) is a complete Menger PM-space with a t-norm of H-type T and S is endowed with a directed graph G = (V(G), E(G)) such that V(G) = S and Delta = {( x, x) : x is an element of S} subset of E( G). The obtained results recover several existing fixed point theorems from the literature. As applications, we obtain a convergence result of successive approximations for certain nonlinear operators defined on a complete metric space. This last result allows us to establish a Kelisky-Rivlin type result for a class of modified q-Bernstein operators on the space C([0, 1]).
引用
收藏
页数:19
相关论文
共 23 条
[1]   Generalized contractions in partially ordered metric spaces [J].
Agarwal, Ravi P. ;
El-Gebeily, M. A. ;
O'Regan, Donal .
APPLICABLE ANALYSIS, 2008, 87 (01) :109-116
[2]   Fixed point results for multivalued contractions on a metric space with a graph [J].
Dinevari, T. ;
Frigon, M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (02) :507-517
[3]  
Fang J.-X., 1991, Appl. Math. Mech., V12, P363
[4]   Common fixed point theorems of compatible and weakly compatible maps in Menger spaces [J].
Fang, Jin-Xuan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) :1833-1843
[5]   Fixed point theorems for multivalued mappings in probabilistic metric spaces [J].
Hadzic, O .
FUZZY SETS AND SYSTEMS, 1997, 88 (02) :219-226
[6]  
Hadzic O., 2001, Fixed Point Theory in Probabilistic Metric Spaces
[7]  
Jachymski J, 2008, P AM MATH SOC, V136, P1359
[8]   Probabilistic G-contractions [J].
Kamran, Tayyab ;
Samreen, Maria ;
Shahzad, Naseer .
FIXED POINT THEORY AND APPLICATIONS, 2013,
[9]   ITERATES OF BERNSTEIN POLYNOMIALS [J].
KELISKY, RP ;
RIVLIN, TJ .
PACIFIC JOURNAL OF MATHEMATICS, 1967, 21 (03) :511-&
[10]  
Kirk W. A., 2003, FIXED POINT THEORY, V4, P79