Growth of ZnSnN2 by Molecular Beam Epitaxy

被引:29
作者
Feldberg, N. [1 ]
Aldous, J. D. [1 ]
Stampe, P. A. [2 ]
Kennedy, R. J. [2 ]
Veal, T. D. [3 ,4 ]
Durbin, S. M. [1 ,5 ]
机构
[1] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA
[2] Florida A&M Univ, Dept Phys, Tallahassee, FL 32307 USA
[3] Univ Liverpool, Stephenson Inst Renewable Energy, Liverpool L69 7ZF, Merseyside, England
[4] Univ Liverpool, Dept Phys, Liverpool L69 7ZF, Merseyside, England
[5] Western Michigan Univ, Dept Elect & Comp Engn, Kalamazoo, MI 49008 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
ZnSnN2; II-IV nitride; earth abundant element semiconductor; MBE; ZNGEN2; NITRIDE; ZNSIN2; FILMS; ZINC;
D O I
10.1007/s11664-013-2962-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Zn-IV-N-2 family of materials represents a potential earth abundant element alternative to conventional compound semiconductor materials that are based on gallium and indium. While both ZnSiN2 and ZnGeN2 have been studied to some degree, very little is known about the narrow-gap member ZnSnN2. Here, we investigate the growth dynamics of crystalline ZnSnN2 through plasma-assisted molecular beam epitaxy. All films exhibit some degree of crystalline order regardless of growth conditions, although significant tin coverage was observed for films grown with low Zn:Sn flux ratio; Zn flux in particular became increasingly problematic at increased substrate temperatures designed to improve crystallinity. Single-crystal material was achieved through careful optimization of growth parameters. Regardless of deposition conditions or substrate choice, however, all films exhibit a monoclinic structure as opposed to the predicted orthorhombic lattice; this can be directly attributed to sublattice disorder.
引用
收藏
页码:884 / 888
页数:5
相关论文
共 23 条
[1]  
Bekele C.M., 2007, THESIS CASE W RESERV
[2]  
Carlin J.F., 2013, Mineral Commodity Summaries 2013, P170
[3]   Epitaxial growth of ZnSiN2 single-crystalline films on sapphire substrates [J].
Cloitre, T ;
Sere, A ;
Aulombard, RL .
SUPERLATTICES AND MICROSTRUCTURES, 2004, 36 (4-6) :377-383
[4]   Synthesis and characterization of ZnGeN2 grown from elemental Zn and Ge sources [J].
Du, K. ;
Bekele, C. ;
Hayman, C. C. ;
Angus, J. C. ;
Piruz, P. ;
Kash, K. .
JOURNAL OF CRYSTAL GROWTH, 2008, 310 (06) :1057-1061
[5]   HIGH-PRESSURE SYNTHESIS OF NEW COMPOUNDS, ZNSIN2 AND ZNGEN2 WITH DISTORTED WURTZITE STRUCTURE [J].
ENDO, T ;
SATO, Y ;
TAKIZAWA, H ;
SHIMADA, M .
JOURNAL OF MATERIALS SCIENCE LETTERS, 1992, 11 (07) :424-426
[6]   Growth, disorder, and physical properties of ZnSnN2 [J].
Feldberg, N. ;
Aldous, J. D. ;
Linhart, W. M. ;
Phillips, L. J. ;
Durose, K. ;
Stampe, P. A. ;
Kennedy, R. J. ;
Scanlon, D. O. ;
Vardar, G. ;
Field, R. L., III ;
Jen, T. Y. ;
Goldman, R. S. ;
Veal, T. D. ;
Durbin, S. M. .
APPLIED PHYSICS LETTERS, 2013, 103 (04)
[7]  
Feldberg N., 2012, P IEEE PHOT SPEC C 2
[8]   Quantitative determination of the order parameter in epitaxial layers of ZnSnP2 [J].
Francoeur, S ;
Seryogin, GA ;
Nikishin, SA ;
Temkin, H .
APPLIED PHYSICS LETTERS, 2000, 76 (15) :2017-2019
[9]   Structural, electrical and optical properties of zinc nitride thin films prepared by reactive rf magnetron sputtering [J].
Futsuhara, M ;
Yoshioka, K ;
Takai, O .
THIN SOLID FILMS, 1998, 322 (1-2) :274-281
[10]   Optimization of the surface and structural quality of N-face InN grown by molecular beam epitaxy [J].
Koblmuller, G. ;
Gallinat, C. S. ;
Bernardis, S. ;
Speck, J. S. ;
Chern, G. D. ;
Readinger, E. D. ;
Shen, H. ;
Wraback, M. .
APPLIED PHYSICS LETTERS, 2006, 89 (07)