The Cattaneo-type time fractional heat conduction equation for laser heating

被引:77
作者
Qi, Hai-Tao [1 ,2 ,3 ]
Xu, Huan-Ying [1 ]
Guo, Xin-Wei [1 ]
机构
[1] Shandong Univ, Sch Math & Stat, Weihai 264209, Peoples R China
[2] Peking Univ, Coll Engn, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
[3] Peking Univ, Coll Engn, Dept Mech & Aerosp Engn, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-Fourier heat conduction; Laser heating; Fractional derivative; Fox's H-function; PROPAGATION; DIFFUSION; LEQUATION;
D O I
10.1016/j.camwa.2012.11.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the laser short-pulse heating of a solid surface is considered. The time fractional Cattaneo model is used as the heat conduction model and the corresponding fractional heat conduction equation with a volumetric heat source is built. The analytical solution for the temperature distribution is obtained using the Laplace transformation method. Finally, the numerical results are presented graphically for various values of model parameters, and their effects on the speed of heat conduction propagation are discussed. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:824 / 831
页数:8
相关论文
共 32 条
[1]   A diffusion wave equation with two fractional derivatives of different order [J].
Atanackovic, T. M. ;
Pilipovic, S. ;
Zorica, D. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (20) :5319-5333
[2]   The Cattaneo type space-time fractional heat conduction equation [J].
Atanackovic, Teodor ;
Konjik, Sanja ;
Oparnica, Ljubica ;
Zorica, Dusan .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2012, 24 (4-6) :293-311
[3]   TEMPERATURE PROFILE IN SEMI-INFINITE BODY WITH EXPONENTIAL SOURCE AND CONVECTIVE BOUNDARY-CONDITION [J].
BLACKWELL, BF .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1990, 112 (03) :567-571
[4]  
CATTANEO C, 1958, CR HEBD ACAD SCI, V247, P431
[5]   The generalized Cattaneo equation for the description of anomalous transport processes [J].
Compte, A ;
Metzler, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (21) :7277-7289
[6]  
Debnath L., 2007, INTEGRAL TRANSFORMS
[7]   Continuous time random walks and heat transfer in porous media [J].
Emmanuel, Simon ;
Berkowitz, Brian .
TRANSPORT IN POROUS MEDIA, 2007, 67 (03) :413-430
[8]   An inverse problem to estimate relaxation parameter and order of fractionality in fractional single-phase-lag heat equation [J].
Ghazizadeh, Hamid R. ;
Azimi, A. ;
Maerefat, M. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (7-8) :2095-2101
[9]  
Heremann R., 2011, FRACTIONAL CALCULUS
[10]  
Hilfer R., 2000, Applications of Fractional Calculus in Physics, DOI DOI 10.1142/3779