Action Recognition in a High-Dimensional Feature Space

被引:0
作者
Adiguzel, Hande [1 ]
Erdem, Hayrettin [1 ]
Ferhatosmanoglu, Hakan [1 ]
Duygulu, Pinar [1 ]
机构
[1] Bilkent Univ, Bilgisayar Muhendisligi Bolumu, Ankara, Turkey
来源
2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU) | 2013年
关键词
Action Recognition; Recognizing Human Motion; Curse of Dimensionality; High-Dimensional Space;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Analyzing and interpreting human actions is an important and challenging area of computer vision. Different solutions are used for representing human actions; we prefer to use spatio-temporal interest points for motion descriptors. Besides, the space-time interest point feature space is considerably high-dimensional and it is hard to eliminate the curse of dimensionality with traditional similarity functions. We apply a matching based approach for high dimensional feature space that matches sequences to classify actions.
引用
收藏
页数:4
相关论文
共 21 条
[1]   Human motion analysis: A review [J].
Aggarwal, JK ;
Cai, Q .
COMPUTER VISION AND IMAGE UNDERSTANDING, 1999, 73 (03) :428-440
[2]  
[Anonymous], 2008, CVPR
[3]  
[Anonymous], 2008, CVPR
[4]   PERFORMANCE OF OPTICAL-FLOW TECHNIQUES [J].
BARRON, JL ;
FLEET, DJ ;
BEAUCHEMIN, SS .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1994, 12 (01) :43-77
[5]  
Baysal S., 2010, ICPR
[6]  
Beyer K, 1999, LECT NOTES COMPUT SC, V1540, P217
[7]  
Dollar P., 2005, Behavior recognition via sparse spatiotemporal feature
[8]  
Fathi A., 2008, CVPR
[9]  
Forstner W.A., 1987, P INT WORKSH INT SOC
[10]  
Hatun K., 2008, ICPR