Thermochemical energy storage at high temperature via redox cycles of Mn and Co oxides: Pure oxides versus mixed ones

被引:142
作者
Carrillo, Alfonso J. [1 ]
Moya, Javier [1 ]
Bayon, Alicia [1 ]
Jana, Prabhas [1 ]
de la Pena O'Shea, Victor A. [1 ]
Romero, Manuel [1 ]
Gonzalez-Aguilar, Jose [1 ]
Serrano, David P. [1 ,2 ]
Pizarro, Patricia [1 ,2 ]
Coronado, Juan M. [1 ]
机构
[1] IMDEA Energy Inst, Madrid 28935, Spain
[2] Rey Juan Carlos Univ, ESCET, Dept Chem & Energy Technol, Madrid 28933, Spain
关键词
Thermal energy storage; Thermochemical energy storage; Concentrated solar power; Redox cycles; Metal oxides; ELECTRICAL-PROPERTIES; THERMAL-BEHAVIOR; MANGANESE OXIDE; COBALT; POWER;
D O I
10.1016/j.solmat.2013.12.018
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Development of thermal energy storage (TES) systems for concentrated solar power (CSP) is essential in order to match a variable electricity demand with an intermittent energy source supply, enhancing energy generation dispatchability. The high energy storage densities and the possibility of working at higher temperature ranges make thermochemical heat storage (TCS) via reduction-oxidation (redox) cycles of metal oxides a promising concept for energy storage. For this purpose, manganese and cobalt oxides have been selected as feasible candidates due to their favourable thermodynamic properties. In order to explore the potential of these materials, the capacity of both pure (Mn2O3 and Co3O4) and mixed oxides (Mn3-xCoxO4) to withstand several charge-discharge cycles was evaluated by thermogravimetrical analysis. Results showed better cyclability for the mixed oxides with low Mn content (x >= 2.94) and, specially, for the corresponding pure oxides, confirming that these materials may be a viable option for TCS. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:47 / 57
页数:11
相关论文
共 33 条
[11]   SOLAR HEAT STORAGE USING CHEMICAL-REACTIONS [J].
ERVIN, G .
JOURNAL OF SOLID STATE CHEMISTRY, 1977, 22 (01) :51-61
[12]   ENERGY-STORAGE USING THE BAO2-BAO REACTION CYCLE [J].
FAHIM, MA ;
FORD, JD .
CHEMICAL ENGINEERING JOURNAL AND THE BIOCHEMICAL ENGINEERING JOURNAL, 1983, 27 (01) :21-28
[13]   Thermodynamic properties of manganese oxides [J].
Fritsch, S ;
Navrotsky, A .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1996, 79 (07) :1761-1768
[14]   State of the art on high temperature thermal energy storage for power generation. Part 1-Concepts, materials and modellization [J].
Gil, Antoni ;
Medrano, Marc ;
Martorell, Ingrid ;
Lazaro, Ana ;
Dolado, Pablo ;
Zalba, Belen ;
Cabeza, Luisa F. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (01) :31-55
[15]   Kinetic and thermodynamic considerations for oxygen absorption/desorption using cobalt oxide [J].
Hutchings, KN ;
Wilson, M ;
Larsen, PA ;
Cutler, RA .
SOLID STATE IONICS, 2006, 177 (1-2) :45-51
[16]   Thermal energy storage technologies and systems for concentrating solar power plants [J].
Kuravi, Sarada ;
Trahan, Jamie ;
Goswami, D. Yogi ;
Rahman, Muhammad M. ;
Stefanakos, Elias K. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2013, 39 (04) :285-319
[17]   CO hydrogenation over nanometer spinel-type Co/Mn complex oxides prepared by sol-gel method [J].
Liang, Q ;
Chen, KD ;
Hou, WH ;
Yan, QJ .
APPLIED CATALYSIS A-GENERAL, 1998, 166 (01) :191-199
[18]   Developing ammonia based thermochemical energy storage for dish power plants [J].
Lovegrove, K ;
Luzzi, A ;
Soldiani, I ;
Kreetz, H .
SOLAR ENERGY, 2004, 76 (1-3) :331-337
[19]   Chemical-looping with oxygen uncoupling for combustion of solid fuels [J].
Mattisson, Tobias ;
Lyngfelt, Anders ;
Leion, Henrik .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2009, 3 (01) :11-19
[20]   Solar-heated rotary kiln for thermochemical energy storage [J].
Neises, M. ;
Tescari, S. ;
de Oliveira, L. ;
Roeb, M. ;
Sattler, C. ;
Wong, B. .
SOLAR ENERGY, 2012, 86 (10) :3040-3048