Assess and validate predictive performance of models for in-hospital mortality in COVID-19 patients: A retrospective cohort study in the Netherlands comparing the value of registry data with high-granular electronic health records

被引:5
|
作者
Vagliano, Iacopo [1 ]
Schut, Martijn C. [1 ]
Abu-Hanna, Ameen [1 ]
Dongelmans, Dave A. [2 ,3 ]
de Lange, Dylan W. [2 ,4 ]
Gommers, Diederik [5 ]
Cremer, Olaf L. [6 ]
Bosman, Rob J. [7 ]
Rigter, Sander [8 ]
Wils, Evert-Jan [9 ]
Frenzel, Tim [10 ]
de Jong, Remko [11 ]
Peters, Marco A. A. [12 ]
Kamps, Marlijn J. A. [13 ]
Ramnarain, Dharmanand [14 ]
Nowitzky, Ralph [15 ]
Nooteboom, Fleur G. C. A. [16 ]
de Ruijter, Wouter [17 ]
Urlings-Strop, Louise C. [18 ]
Smit, Ellen G. M. [19 ]
Mehagnoul-Schipper, D. Jannet [20 ]
Dormans, Tom [21 ]
de Jager, Cornelis P. C. [22 ]
Hendriks, Stefaan H. A. [23 ]
Achterberg, Sefanja [24 ]
Oostdijk, Evelien [25 ]
Reidinga, Auke C. [26 ]
Festen-Spanjer, Barbara [27 ]
Brunnekreef, Gert B. [28 ]
Cornet, Alexander D. [29 ]
van den Tempel, Walter [30 ]
Boelens, Age D. [31 ]
Koetsier, Peter [32 ]
Lens, Judith [33 ]
Faber, Harald J. [34 ]
Karakus, A. [35 ]
Entjes, Robert [36 ]
de Jong, Paul [37 ]
Rettig, Thijs C. D. [38 ]
Reuland, M. C. [3 ]
Arbous, Sesmu [39 ]
Fleuren, Lucas M. [40 ]
Dam, Tariq A. [40 ]
Thoral, Patrick J. [40 ]
Lalisang, Robbert C. A. [41 ]
Tonutti, Michele [41 ]
de Bruin, Daan P. [41 ]
Elbers, Paul W. G. [40 ]
de Keizer, Nicolette F. [1 ,2 ]
机构
[1] Univ Amsterdam, Amsterdam Publ Hlth Res Inst, Dept Med Informat, Amsterdam UMC, Meibergdreef 9, NL-1105 AZ Amsterdam, Netherlands
[2] Natl Intens Care Evaluat NICE Fdn, Amsterdam, Netherlands
[3] Univ Amsterdam, Dept Intens Care Med, Amsterdam UMC, Amsterdam, Netherlands
[4] Univ Utrecht, Univ Med Ctr Utrecht, Dept Intens Care Med, Utrecht, Netherlands
[5] Erasmus MC, Dept Intens Care, Rotterdam, Netherlands
[6] UMC Utrecht, Intens Care, Utrecht, Netherlands
[7] OLVG, ICU, Amsterdam, Netherlands
[8] St Antonius Hosp, Dept Anesthesiol & Intens Care, Nieuwegein, Netherlands
[9] Franciscus Gasthuis & Vlietland, Dept Intens Care, Rotterdam, Netherlands
[10] Radboud Univ Nijmegen, Dept Intens Care Med, Med Ctr, Nijmegen, Netherlands
[11] Bovenij Ziekenhuis, Intens Care, Amsterdam, Netherlands
[12] Canisius Wilhelmina Ziekenhuis, Intens Care, Nijmegen, Netherlands
[13] Catharina Ziekenhuis Eindhoven, Intens Care, Eindhoven, Netherlands
[14] ETZ Tilburg, Dept Intens Care, Tilburg, Netherlands
[15] Haga Ziekenhuis, Intens Care, The Hague, Netherlands
[16] Laurentius Ziekenhuis, Intens Care, Roermond, Netherlands
[17] Northwest Clin, Dept Intens Care Med, Alkmaar, Netherlands
[18] Reinier Graaf Gasthuis, Intens Care, Delft, Netherlands
[19] Spaarne Gasthuis, Intens Care, Haarlem En Hoofddorp, Netherlands
[20] VieCuri Med Ctr, Intens Care, Venlo, Netherlands
[21] Zuyderland MC, Intens Care, Heerlen, Netherlands
[22] Jeroen Bosch Ziekenhuis, Dept Intens Care, Den Bosch, Netherlands
[23] Albert Schweitzerziekenhuis, Intens Care, Dordrecht, Netherlands
[24] Haaglanden Med Ctr, ICU, The Hague, Netherlands
[25] Maasstad Ziekenhuis Rotterdam, ICU, Rotterdam, Netherlands
[26] Martiniziekenhuis, BWC, SEH, ICU, Groningen, Netherlands
[27] Ziekenhuis Gelderse Vallei, Intens Care, Ede, Netherlands
[28] Ziekenhuisgrp Twente, Dept Intens Care, Almelo, Netherlands
[29] Med Spectrum Twente, Dept Intens Care, Enschede, Netherlands
[30] Ikazia Ziekenhuis Rotterdam, Dept Intens Care, Rotterdam, Netherlands
[31] Antonius Ziekenhuis Sneek, Anesthesiol, Sneek, Netherlands
[32] Med Ctr Leeuwarden, Intens Care, Leeuwarden, Netherlands
[33] IJsselland Ziekenhuis, ICU, Capelle Aan Den Ijssel, Netherlands
[34] WZA, ICU, Assen, Netherlands
[35] Diakonessenhuis Hosp, Dept Intens Care, Utrecht, Netherlands
[36] Adrz, Dept Intens Care, Goes, Netherlands
[37] Slingeland Ziekenhuis, Dept Anesthesia & Intens Care, Doetinchem, Netherlands
[38] Amphia Ziekenhuis, Dept Anesthesiol Intens Care & Pain Med, Breda, Netherlands
[39] LUMC, Leiden, Netherlands
[40] Vrije Univ, Amsterdam UMC, Amsterdam Med Data Sci, Dept Intens Care Med,Lab Crit Care Computat Intel, Amsterdam, Netherlands
[41] Pacmed, Amsterdam, Netherlands
关键词
Covid-19 [C01.748.610.763.500; Critical care [E02.760.190; In-hospital mortality; E05.318.308.985.550.400; Prognosis [E01.789; Machine learning [G17.035.250.500; Electronic Health Record; E05.318.308.940.968.625.500; RESOURCE; QUALITY;
D O I
10.1016/j.ijmedinf.2022.104863
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Purpose: To assess, validate and compare the predictive performance of models for in-hospital mortality of COVID-19 patients admitted to the intensive care unit (ICU) over two different waves of infections. Our models were built with high-granular Electronic Health Records (EHR) data versus less-granular registry data. Methods: Observational study of all COVID-19 patients admitted to 19 Dutch ICUs participating in both the national quality registry National Intensive Care Evaluation (NICE) and the EHR-based Dutch Data Warehouse (hereafter EHR). Multiple models were developed on data from the first 24 h of ICU admissions from February to June 2020 (first COVID-19 wave) and validated on prospective patients admitted to the same ICUs between July and December 2020 (second COVID-19 wave). We assessed model discrimination, calibration, and the degree of relatedness between development and validation population. Coefficients were used to identify relevant risk factors. Results: A total of 1533 patients from the EHR and 1563 from the registry were included. With high granular EHR data, the average AUROC was 0.69 (standard deviation of 0.05) for the internal validation, and the AUROC was 0.75 for the temporal validation. The registry model achieved an average AUROC of 0.76 (standard deviation of 0.05) in the internal validation and 0.77 in the temporal validation. In the EHR data, age, and respiratory-system related variables were the most important risk factors identified. In the NICE registry data, age and chronic respiratory insufficiency were the most important risk factors. Conclusion: In our study, prognostic models built on less-granular but readily-available registry data had similar performance to models built on high-granular EHR data and showed similar transportability to a prospective COVID-19 population. Future research is needed to verify whether this finding can be confirmed for upcoming waves.
引用
收藏
页数:11
相关论文
共 8 条
  • [1] Predictive Value of CAR for In-Hospital Mortality in Patients with COVID-19 Pneumonia: A Retrospective Cohort Study
    Guney, Basak Cakir
    Tastan, Yesim Onal
    Dogantekin, Betul
    Serindag, Zeliha
    Yeniceri, Murat
    Cicek, Vedat
    Kilic, Sahhan
    Seker, Mehmet
    Cinar, Tufan
    Hayiroglu, Mert Ilker
    Kaplan, Mustafa
    ARCHIVES OF MEDICAL RESEARCH, 2021, 52 (05) : 554 - 560
  • [2] Relationship Between Platelet Count and In-hospital Mortality in Adult Patients With COVID-19: A Retrospective Cohort Study
    Yang, Qilin
    Gao, Jun
    Zeng, Xiaomei
    Chen, Junyu
    Wen, Deliang
    FRONTIERS IN MEDICINE, 2022, 9
  • [3] Derivation and external validation of a simple risk score to predict in-hospital mortality in patients hospitalized for COVID-19 A multicenter retrospective cohort study
    Mann, Charlotte Z.
    Abshire, Chelsea
    Yost, Monica
    Kaatz, Scott
    Swaminathan, Lakshmi
    Flanders, Scott A.
    Prescott, Hallie C.
    Gagnon-Bartsch, Johann A.
    MEDICINE, 2021, 100 (40) : E27422
  • [4] Characteristics, comorbidities, 30-day outcome and in-hospital mortality of patients hospitalised with COVID-19 in a Swiss area - a retrospective cohort study
    Charlotte, Pellaud
    Gael, Grandmaison
    Huua, Thien Hoa Phong Pham
    Marine, Baumberger
    Guillaume, Carrel
    Hatem, Ksouri
    Veronique, Erard
    Christian, Chuard
    Daniels, Hayoz
    Govind, Sridharan
    SWISS MEDICAL WEEKLY, 2020, 150
  • [5] Developing a mortality risk prediction model using data of 3663 hospitalized COVID-19 patients: a retrospective cohort study in an Egyptian University Hospital
    Kandil, Sahar
    Tharwat, Ayman I.
    Mohsen, Sherief M.
    Eldeeb, Mai
    Abdallah, Waleed
    Hilal, Amr
    Sweed, Hala
    Mortada, Mohamed
    Arif, Elham
    Ahmed, Tarek
    Elshafie, Ahmed
    Youssef, Tarek
    Zaki, Mohamed
    El-Gendy, Yasmin
    Ebied, Essam
    Hamad, Safwat
    Habil, Ihab
    Dabbous, Hany
    El-Said, Amr
    Mostafa, Yasser
    Girgis, Samia
    Mansour, Ossama
    El-Anwar, Ali
    Omar, Ashraf
    Saleh, Ayman
    El-Meteini, Mahmoud
    BMC PULMONARY MEDICINE, 2023, 23 (01)
  • [6] Developing a mortality risk prediction model using data of 3663 hospitalized COVID-19 patients: a retrospective cohort study in an Egyptian University Hospital
    Sahar Kandil
    Ayman I. Tharwat
    Sherief M. Mohsen
    Mai Eldeeb
    Waleed Abdallah
    Amr Hilal
    Hala Sweed
    Mohamed Mortada
    Elham Arif
    Tarek Ahmed
    Ahmed Elshafie
    Tarek Youssef
    Mohamed Zaki
    Yasmin El-Gendy
    Essam Ebied
    Safwat Hamad
    Ihab Habil
    Hany Dabbous
    Amr El-Said
    Yasser Mostafa
    Samia Girgis
    Ossama Mansour
    Ali El-Anwar
    Ashraf Omar
    Ayman Saleh
    Mahmoud El-Meteini
    BMC Pulmonary Medicine, 23
  • [7] Over 60 years of age as an independent prognostic factor of in-hospital mortality among COVID-19 patients: a cohort study in an Iranian high-incidence area
    Navayi, M.
    Fanoodi, A.
    Salmani, F.
    Abedi, F.
    Shetty, S.
    Riahi, S. M.
    PUBLIC HEALTH, 2021, 200 : 33 - 38
  • [8] COVID-19-Related Neuropsychiatric Symptoms in Patients With Alcohol Abuse Conditions During the SARS-CoV-2 Pandemic: A Retrospective Cohort Study Using Real World Data From Electronic Health Records of a Tertiary Hospital
    Varela Rodriguez, Carolina
    Arias Horcajadas, Francisco
    Martin-Arriscado Arroba, Cristina
    Combarro Ripoll, Carolina
    Juanes Gonzalez, Alba
    Esperesate Pajares, Marina
    Rodrigo Holgado, Irene
    Cadenas Mancenido, Alvaro
    Sanchez Rodriguez, Laura
    Baselga Penalva, Blanca
    Marin, Marta
    Rubio, Gabriel
    FRONTIERS IN NEUROLOGY, 2021, 12