Where fast weathering creates thin regolith and slow weathering creates thick regolith

被引:92
作者
Bazilevskaya, Ekaterina [1 ]
Lebedeva, Marina [1 ]
Pavich, Milan [2 ]
Rother, Gernot [3 ]
Parkinson, Dilworth Y. [4 ]
Cole, David [5 ]
Brantley, Susan L. [1 ]
机构
[1] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA
[2] US Geol Survey, Eastern Geol & Paleoclimate Sci Ctr, Reston, VA 22092 USA
[3] Oak Ridge Natl Lab, Geochem & Interfacial Sci Grp, Div Chem Sci, Oak Ridge, TN USA
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[5] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
regolith thickness; fluid transport; neutron scattering; geomorphology; nanoporosity; LUQUILLO MOUNTAINS; NEUTRON-SCATTERING; PUERTO-RICO; LONG-TERM; RATES; GRANITE; EROSION; MODEL; ROCKS; SAPROLITE;
D O I
10.1002/esp.3369
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Weathering disaggregates rock into regolith - the fractured or granular earth material that sustains life on the continental land surface. Here, we investigate what controls the depth of regolith formed on ridges of two rock compositions with similar initial porosities in Virginia (USA). A priori, we predicted that the regolith on diabase would be thicker than on granite because the dominant mineral (feldspar) in the diabase weathers faster than its granitic counterpart. However, weathering advanced 20x deeper into the granite than the diabase. The 20x-thicker regolith is attributed mainly to connected micron-sized pores, microfractures formed around oxidizing biotite at 20m depth, and the lower iron (Fe) content in the felsic rock. Such porosity allows pervasive advection and deep oxidation in the granite. These observations may explain why regolith worldwide is thicker on felsic compared to mafic rock under similar conditions. To understand regolith formation will require better understanding of such deep oxidation reactions and how they impact fluid flow during weathering. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:847 / 858
页数:12
相关论文
共 73 条
  • [1] Regolith geology of the Yilgarn Craton, Western Australia: implications for exploration
    Anand, RR
    Paine, M
    [J]. AUSTRALIAN JOURNAL OF EARTH SCIENCES, 2002, 49 (01) : 3 - 162
  • [2] Anderson SP, 2002, GEOL SOC AM BULL, V114, P1143
  • [3] A new approach to quantification of metamorphism using ultra-small and small angle neutron scattering
    Anovitz, Lawrence M.
    Lynn, Gary W.
    Cole, David R.
    Rother, Gernot
    Allard, Lawrence F.
    Hamilton, William A.
    Porcar, Lionel
    Kim, Man-Ho
    [J]. GEOCHIMICA ET COSMOCHIMICA ACTA, 2009, 73 (24) : 7303 - 7324
  • [4] Coupling meteoric 10Be with pedogenic losses of 9Be to improve soil residence time estimates on an ancient North American interfluve
    Bacon, Allan R.
    Richter, Daniel deB.
    Bierman, Paul R.
    Rood, Dylan H.
    [J]. GEOLOGY, 2012, 40 (09) : 847 - 850
  • [5] Bandstra J.Z., 2008, Kinetics of Water-Rock Interaction, P737
  • [6] Blum AE, 1995, REV MINERAL, V31, P291
  • [7] BORNSTEIN J, 1980, MAINE AES TECH BULL, P1
  • [8] Modelling chemical depletion profiles in regolith
    Brantley, S. L.
    Bandstra, J.
    Moore, J.
    White, A. F.
    [J]. GEODERMA, 2008, 145 (3-4) : 494 - 504
  • [9] Learning to Read the Chemistry of Regolith to Understand the Critical Zone
    Brantley, Susan L.
    Lebedeva, Marina
    [J]. ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, VOL 39, 2011, 39 : 387 - 416
  • [10] Approaches to Modeling Weathered Regolith
    Brantley, Susan L.
    White, Art F.
    [J]. THERMODYNAMICS AND KINETICS OF WATER-ROCK INTERACTION, 2009, 70 : 435 - 484