Full InGaN red light emitting diodes

被引:69
作者
Dussaigne, A. [1 ]
Barbier, F. [1 ]
Damilano, B. [2 ]
Chenot, S. [2 ]
Grenier, A. [1 ]
Papon, A. M. [1 ]
Samuel, B. [1 ]
Ben Bakir, B. [1 ]
Vaufrey, D. [1 ]
Pillet, J. C. [1 ]
Gasse, A. [1 ]
Ledoux, O. [3 ]
Rozhavskaya, M. [3 ]
Sotta, D. [3 ]
机构
[1] Univ Grenoble Alpes, CEA, LETI, Minatec Campus, F-38054 Grenoble, France
[2] CNRS, CRHEA, F-06560 Valbonne, France
[3] Soitec SA, F-38190 Bernin, France
关键词
GROWTH; QUALITY; EPITAXY; THICK;
D O I
10.1063/5.0016217
中图分类号
O59 [应用物理学];
学科分类号
摘要
The full InGaN structure is used to achieve red light emitting diodes (LEDs). This LED structure is composed of a partly relaxed InGaN pseudo-substrate fabricated by Soitec, namely, InGaNOS, a n-doped buffer layer formed by a set of InxGa1-xN/GaN superlattices, thin InyGa1-yN/InxGa1-xN multiple quantum wells, and a p doped InxGa1-xN area. p-doped InGaN layers are first studied to determine the optimal Mg concentration. In the case of an In content of 2%, an acceptor concentration of 1x10(19)/cm(3) was measured for a Mg concentration of 2x10(19)/cm(3). Red electroluminescence was then demonstrated for two generations of LEDs, including chip sizes of 300x300 mu m(2) and 50x50 mu m(2). The differences between these two LED generations are detailed. For both devices, red emission with a peak wavelength at 620nm was observed for a pumping current density of 12A/cm(2). Red light-emission is maintained over the entire tested current range. From the first to the second LED generation, the maximum external quantum efficiency, obtained in the range of 17-40A/cm(2), was increased by almost one order of magnitude (a factor of 9), thanks to the different optimizations.
引用
收藏
页数:9
相关论文
共 43 条
[21]   High hole concentrations in Mg-doped InGaN grown by MOVPE [J].
Kumakura, K ;
Makimoto, T ;
Kobayashi, N .
JOURNAL OF CRYSTAL GROWTH, 2000, 221 :267-270
[22]   Strain-compensated (Ga,In)N/(Al,Ga)N/GaN multiple quantum wells for improved yellow/amber light emission [J].
Lekhal, K. ;
Damilano, B. ;
Ngo, H. T. ;
Rosales, D. ;
De Mierry, P. ;
Hussain, S. ;
Vennegues, P. ;
Gil, B. .
APPLIED PHYSICS LETTERS, 2015, 106 (14)
[23]   Elastically frustrated rehybridization: Origin of chemical order and compositional limits in InGaN quantum wells [J].
Lymperakis, L. ;
Schulz, T. ;
Freysoldt, C. ;
Anikeeva, M. ;
Chen, Z. ;
Zheng, X. ;
Shen, B. ;
Cheze, C. ;
Siekacz, M. ;
Wang, X. Q. ;
Albrecht, M. ;
Neugebauer, J. .
PHYSICAL REVIEW MATERIALS, 2018, 2 (01)
[24]   Efficiency Drop in Green InGaN/GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations [J].
Maur, Matthias Auf Der ;
Pecchia, Alessandro ;
Penazzi, Gabriele ;
Rodrigues, Walter ;
Di Carlo, Aldo .
PHYSICAL REVIEW LETTERS, 2016, 116 (02)
[25]  
McIntosh F. G., 1996, U.S. patent, Patent No. [5,684,309, 5684309]
[26]  
Morkoc H., 2008, Handbook of Nitride Semiconductors and Devices: Electronic and Optical Processes in Wide Band Gap Semiconductors, V2
[27]   Thick InGaN Growth by Metal Organic Vapor Phase Epitaxy with Sputtered InGaN Buffer Layer [J].
Ohata, Toshiya ;
Honda, Yoshio ;
Yamaguchi, Masahito ;
Amano, Hiroshi .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2013, 52 (08)
[28]   Influence of size-reduction on the performances of GaN-based micro-LEDs for display application [J].
Olivier, Francois ;
Tirano, Sauveur ;
Dupre, Ludovic ;
Aventurier, Bernard ;
Largeron, Christophe ;
Templier, Francois .
JOURNAL OF LUMINESCENCE, 2017, 191 :112-116
[29]   Electrical and optical properties of p-type InGaN [J].
Pantha, B. N. ;
Sedhain, A. ;
Li, J. ;
Lin, J. Y. ;
Jiang, H. X. .
APPLIED PHYSICS LETTERS, 2009, 95 (26)
[30]   Role of compositional fluctuations and their suppression on the strain and luminescence of InGaN alloys [J].
Pantzas, Konstantinos ;
Patriarche, Gilles ;
Troadec, David ;
Kociak, Mathieu ;
Cherkashin, Nikolay ;
Hytch, Martin ;
Barjon, Julien ;
Tanguy, Christian ;
Rivera, Thomas ;
Suresh, Sundaram ;
Ougazzaden, Abdallah .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (05)