Nonlinear Regression for Analog Data based on BP Neural Network

被引:0
作者
Jiang, Yin-Zhen [1 ]
Wang, Yi-Huai [1 ]
机构
[1] Soochow Univ, Inst Comp Sci & Technol, Suzhou, Peoples R China
来源
2010 INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT (CCCM2010), VOL I | 2010年
关键词
Embedded system; Analog data collection; BP neural networks; Nonlinear regression;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In order to solve the nonlinear regression problem in analog data collection system and achieve nonlinear analog correction by programming, a design method based on artificial neural network (ANN) is presented. After analyzing the lack of other regression methods, Error back-propagation (BP) algorithm is selected. The software on PC is designed to verify the feasibility and effectiveness of the BP algorithm, which is compared to least squares (LS) algorithm.
引用
收藏
页码:245 / 248
页数:4
相关论文
共 8 条
  • [1] Backpropagation algorithms for a broad class of dynamic networks
    De Jesus, Orlando
    Hagan, Martin T.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2007, 18 (01): : 14 - 27
  • [2] A modified backpropagation training algorithm for feedforward neural networks
    Kathirvalavakumar, T
    Thangavel, P
    [J]. NEURAL PROCESSING LETTERS, 2006, 23 (02) : 111 - 119
  • [3] Khanna T., 1990, FDN NEURAL NETWORKS
  • [4] NONLINEAR MODELS OF TEMPERATURE SENSOR DYNAMICS
    MINKINA, W
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 1992, 30 (03) : 209 - 214
  • [5] Tzu C R, 2003, NEUROCOMPUTING, V50, P237
  • [6] WANG Yihuai, 2004, COMPUTER ENG APPL, V12, P79
  • [7] Yu X A, 2001, P IEEE INT S CIRC SY, P700
  • [8] Zhi H, 2006, IEEE T NEURAL NETWOR, V17, P1580