Computing Fitting ideals of Iwasawa modules

被引:17
作者
Greither, C [1 ]
机构
[1] Univ Bundeswehr Munchen, Inst Theoret Informat & Math, D-85577 Neubiberg, Germany
关键词
D O I
10.1007/s00209-003-0610-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper determines, in an equivariant sense, the Fitting ideals of several Iwasawa modules including the most canonical one. The connection between the modules themselves, which are usually not of finite projective dimension, and the required auxiliary modules of finite projective dimension is made rather explicit. The resulting Fitting ideals look like Stickelberger ideals, and there is a close relation with recent work of Kurihara. As an application we obtain new evidence in favor of the Brumer-Stark conjecture.
引用
收藏
页码:733 / 767
页数:35
相关论文
共 22 条
[1]   On Galois structure invariants associated to Tate motives [J].
Burns, D ;
Flach, M .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (06) :1343-1397
[2]   On the equivariant Tamagawa number conjecture for Tate motives [J].
Burns, D ;
Greither, C .
INVENTIONES MATHEMATICAE, 2003, 153 (02) :303-359
[3]  
BURNS D, IN PRESS DOCUMENTA M
[4]  
BURNS D, 2001, TAMAGAWA NUMBERS P A
[5]   Galois structure of K-groups of rings of integers [J].
Chinburg, T ;
Kolster, M ;
Pappas, G ;
Snaith, V .
K-THEORY, 1998, 14 (04) :319-369
[6]   Fitting ideals of class groups of real fields with prime power conductor [J].
Cornacchia, P ;
Greither, C .
JOURNAL OF NUMBER THEORY, 1998, 73 (02) :459-471
[7]   On the Coates-Sinnott conjecture [J].
Cornacchia, P ;
Ostvær, PA .
K-THEORY, 2000, 19 (02) :195-209
[8]   Some cases of Brumer's conjecture for abelian CM extensions of totally real fields [J].
Greither, C .
MATHEMATISCHE ZEITSCHRIFT, 2000, 233 (03) :515-534
[9]   The Brumer-Stark conjecture in some families of extensions of specified degree [J].
Greither, C ;
Roblot, XF ;
Tangedal, BA .
MATHEMATICS OF COMPUTATION, 2004, 73 (245) :297-315
[10]   The structure of some minus class groups, and Chinburg's third conjecture for abelian fields [J].
Greither, C .
MATHEMATISCHE ZEITSCHRIFT, 1998, 229 (01) :107-136