Numerical solution of a nonlinear Abel type Volterra integral equation

被引:15
作者
Diogo, T
Lima, P
Rebelo, M
机构
[1] Inst Super Tecn, Dept Matemat, CEMAT, P-1049001 Lisbon, Portugal
[2] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, P-2825 Monte De Caparica, Portugal
关键词
nonlinear Volterra integral equation; weakly singular kernel; Euler's method; convergence;
D O I
10.3934/cpaa.2006.5.277
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the analytical and numerical analysis of a nonlinear weakly singular Volterra integral equation. Owing to the singularity of the solution at the origin, the global convergence order of Euler's method is less than one. The smoothness proper-ties of the solution are investigated and, by a detailed error analysis, we prove that first order of convergence can be achieved away from the origin. Some numerical results are included confirming the theoretical estimates.
引用
收藏
页码:277 / 288
页数:12
相关论文
共 41 条
[1]   A NUMERICAL APPROACH TO THE SOLUTION OF ABEL INTEGRAL-EQUATIONS OF THE 2ND KIND WITH NONSMOOTH SOLUTION [J].
ABDALKHANI, J .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 29 (03) :249-255
[2]  
Abdalkhani J., 1993, J INTEGRAL EQUAT, V5, P149
[3]   A new approach to the numerical solution of weakly singular Volterra integral equations [J].
Baratella, P ;
Orsi, AP .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 163 (02) :401-418
[5]   The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations [J].
Brunner, H ;
Pedas, A ;
Vainikko, G .
MATHEMATICS OF COMPUTATION, 1999, 68 (227) :1079-1095
[6]  
BRUNNER H, 1984, J INTEGRAL EQUAT, V6, P187
[7]  
BRUNNER H, 1985, MATH COMPUT, V45, P417, DOI 10.1090/S0025-5718-1985-0804933-3
[8]  
Brunner H., 2004, COLLOCATION METHODS
[9]  
Brunner H., 1986, CWI MONOGRAPHS, V3
[10]   PRODUCT INTEGRATION METHODS FOR 2ND-KIND ABEL INTEGRAL-EQUATIONS [J].
CAMERON, RF ;
MCKEE, S .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (01) :1-10