Controlled random fields, von Neumann-Gale dynamics and multimarket hedging with risk

被引:7
作者
Evstigneev, I. V. [1 ]
Zhitlukhin, M. V. [1 ,2 ]
机构
[1] Univ Manchester, Manchester, Lancs, England
[2] VA Steklov Math Inst, Moscow 117333, Russia
来源
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS | 2013年 / 85卷 / 04期
关键词
hedging; multimarket models; von Neumann-Gale dynamical systems; controlled random fields; consistent price systems; STOCHASTIC EQUILIBRIA; ARBITRAGE; GRAPHS;
D O I
10.1080/17442508.2013.795565
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a model of asset pricing and hedging for interconnected financial markets with frictions - transaction costs and portfolio constraints. The model is based on a control theory for random fields on a directed graph. Market dynamics are described by using von Neumann-Gale dynamical systems first considered in connection with the modelling of economic growth [13,24]. The main results are hedging criteria stated in terms of risk-acceptable portfolios and consistent price systems, extending the classical superreplication criteria formulated in terms of equivalent martingale measures.
引用
收藏
页码:652 / 666
页数:15
相关论文
共 24 条
[1]  
[Anonymous], 2009, Markets with Transaction Costs Mathematical Theory
[2]  
Arkin V.I., 1987, STOCHASTIC MODELS CO
[3]   PRICING WITH COHERENT RISK [J].
Cherny, A. S. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2008, 52 (03) :389-415
[4]   THE VALUATION PROBLEM IN ARBITRAGE PRICE THEORY [J].
CLARK, SA .
JOURNAL OF MATHEMATICAL ECONOMICS, 1993, 22 (05) :463-478
[5]   Beyond arbitrage:: Good-deal asset price bounds in incomplete markets [J].
Cochrane, JH ;
Saá-Requejo, J .
JOURNAL OF POLITICAL ECONOMY, 2000, 108 (01) :79-119
[6]   Asset pricing and hedging in financial markets with transaction costs: An approach based on the von Neumann-Gale model [J].
Dempster M.A.H. ;
Evstigneev I.V. ;
Taksar M.I. .
Annals of Finance, 2006, 2 (4) :327-355
[7]   STOCHASTIC EQUILIBRIA ON GRAPHS .1. [J].
EVSTIGNEEV, I ;
TAKSAR, M .
JOURNAL OF MATHEMATICAL ECONOMICS, 1994, 23 (05) :401-433
[8]  
Evstigneev I.V., 2006, HDB OPTIMAL GROWTH, V1, P337, DOI 10.1007/3-540-32310-4_12
[9]   Dynamic interaction models of economic equilibrium [J].
Evstigneev, Igor ;
Taksar, Michael .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2009, 33 (01) :166-182
[10]   On the fundamental theorem of asset pricing:: Random constraints and bang-bang no-arbitrage criteria [J].
Evstigneev, IV ;
Schürger, K ;
Taksar, MI .
MATHEMATICAL FINANCE, 2004, 14 (02) :201-221