GLOBAL STABILITY IN THE 2D RICKER EQUATION REVISITED

被引:13
作者
Ryals, Brian [1 ]
Sacker, Robert J. [2 ]
机构
[1] Calif State Univ Bakersfield, Dept Math, Bakersfield, CA 93311 USA
[2] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2017年 / 22卷 / 02期
关键词
Global stability; two-dimensional competition model; discrete dynamics; Ricker model; MODELS;
D O I
10.3934/dcdsb.2017028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We offer two improvements to prior results concerning global stability of the 2D Ricker Equation. We also offer some new methods of approach for the more pathological cases and prove some miscellaneous results including a special nontrivial case in which the mapping is conjugate to the 1D Ricker map along an invariant line and a proof of the non-existence of period-2 points.
引用
收藏
页码:585 / 604
页数:20
相关论文
共 19 条
[1]   Competitive exclusion and coexistence in an n-species Ricker model [J].
Ackleh, Azmy S. ;
Salceanu, Paul L. .
JOURNAL OF BIOLOGICAL DYNAMICS, 2015, 9 :321-331
[2]  
Baigent S., 2015, S BAIGENT, V12, P8167
[3]   LOCAL STABILITY IMPLIES GLOBAL STABILITY FOR THE PLANAR RICKER COMPETITION MODEL [J].
Balera, E. Cabral ;
Elaydi, Saber ;
Luis, Rafael .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (02) :323-351
[4]  
CULL P, 1988, B MATH BIOL, V50, P67
[5]  
Devaney R., 2003, INTRO CHAOTIC DYNAMI
[6]  
Elavdi S., 2008, DISCRETE CHAOS
[7]  
Elaydi S., 2005, INTRO DIFFERENCE EQU
[8]   THE DISCRETE DYNAMICS OF SYMMETRICAL COMPETITION IN THE PLANE [J].
JIANG, H ;
ROGERS, TD .
JOURNAL OF MATHEMATICAL BIOLOGY, 1987, 25 (06) :573-596
[9]   Simple mathematical models for interacting wild and transgenic mosquito populations [J].
Li, J .
MATHEMATICAL BIOSCIENCES, 2004, 189 (01) :39-59
[10]  
Liz E, 2007, DISCRETE CONT DYN-B, V7, P191