Chemotaxonomy as a tool for interpreting the cryptic diversity of Poaceae pollen

被引:38
作者
Julier, Adele C. M. [1 ]
Jardine, Phillip E. [1 ]
Coe, Angela L. [1 ]
Gosling, William D. [1 ,2 ]
Lomax, Barry H. [3 ]
Fraser, Wesley T. [1 ,4 ]
机构
[1] Open Univ, Dept Environm Earth & Ecosyst, Walton Hall, Milton Keynes MK7 6AA, Bucks, England
[2] Univ Amsterdam, Palaeoecol & Landscape Ecol, Inst Biodivers & Ecosyst Dynam, POB 94248, NL-1090 GE Amsterdam, Netherlands
[3] Univ Nottingham, Sch Biosci, Sutton Bonington Campus, Loughborough LE12 5RD, Leics, England
[4] Oxford Brookes Univ, Dept Social Sci, Geog, Gipsy Lane, Oxford OX3 0BP, England
关键词
Fourier Transform Infra-red Spectroscopy; Pollen identification; Poaceae; Sporopollenin; Taxonomy; FORENSIC PALYNOLOGY; SPORE CHEMISTRY; GRASS-POLLEN; MORPHOLOGY; MELISSOPALYNOLOGY; CLASSIFICATION; RESOLUTION; PLANTS; EXINE;
D O I
10.1016/j.revpalbo.2016.08.004
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The uniform morphology of different species of Poaceae (grass) pollen means that identification to below family level using light microscopy is extremely challenging. Poor taxonomic resolution reduces recoverable information from the grass pollen record, for example, species diversity and environmental preferences cannot be extracted. Recent research suggests Fourier Transform Infra-red Spectroscopy (FTIR) can be used to identify pollen grains based on their chemical composition. Here, we present a study of twelve species from eight subfamilies of Poaceae, selected from across the phylogeny but from a relatively constrained geographical area (tropical West Africa) to assess the feasibility of using this chemical method for identification within the Poaceae family. We assess several spectral processing methods and use K-nearest neighbour (k-nn) analyses, with a leave one-out cross-validation, to generate identification success rates at different taxonomic levels. We demonstrate we can identify grass pollen grains to subfamily level with an 80% success rate. Our success in identifying Poaceae to subfamily level using FUR provides an opportunity to generate high taxonomic resolution datasets in research areas such as palaeoecology, forensics, and melissopalynology quickly and at a relatively low cost. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.
引用
收藏
页码:140 / 147
页数:8
相关论文
共 55 条
[1]   New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins [J].
Aliscioni, Sandra ;
Bell, Hester L. ;
Besnard, Guillaume ;
Christin, Pascal-Antoine ;
Columbus, J. Travis ;
Duvall, Melvin R. ;
Edwards, Erika J. ;
Giussani, Liliana ;
Hasenstab-Lehman, Kristen ;
Hilu, Khidir W. ;
Hodkinson, Trevor R. ;
Ingram, Amanda L. ;
Kellogg, Elizabeth A. ;
Mashayekhi, Saeideh ;
Morrone, Osvaldo ;
Osborne, Colin P. ;
Salamin, Nicolas ;
Schaefer, Hanno ;
Spriggs, Elizabeth ;
Smith, Stephen A. ;
Zuloaga, Fernando .
NEW PHYTOLOGIST, 2012, 193 (02) :304-312
[2]  
ANDERSEN S T, 1972, Grana, V12, P79
[3]   The occurrence of p-coumaric acid and ferulic acid in fossil plant materials and their use as UV-proxy [J].
Blokker, Peter ;
Boelen, Peter ;
Broekman, Rob ;
Rozema, Jelte .
PLANT ECOLOGY, 2006, 182 (1-2) :197-207
[4]  
Boom A., 2004, THESIS
[5]   Derivative preprocessing and optimal corrections for baseline drift in multivariate calibration [J].
Brown, CD ;
Vega-Montoto, L ;
Wentzell, PD .
APPLIED SPECTROSCOPY, 2000, 54 (07) :1055-1068
[6]   On the interpretation of fossil Poaceae pollen in the lowland humid neotropics [J].
Bush, MB .
PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2002, 177 (1-2) :5-17
[7]   Pollen morphology of Basmati cultivars (Oryza sativa race Indica) -: exine surface ultrastructure [J].
Datta, K ;
Chaturvedi, M .
GRANA, 2004, 43 (02) :89-93
[8]   Biomacromolecules of algae and plants and their fossil analogues [J].
de Leeuw, Jan W. ;
Versteegh, Gerard J. M. ;
van Bergen, Pim F. .
PLANT ECOLOGY, 2006, 182 (1-2) :209-233
[9]   Pollen discrimination and classification by Fourier transform infrared (FT-IR) microspectroscopy and machine learning [J].
Dell'Anna, R. ;
Lazzeri, P. ;
Frisanco, M. ;
Monti, F. ;
Campeggi, F. Malvezzi ;
Gottardini, E. ;
Bersani, M. .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2009, 394 (05) :1443-1452
[10]   Multivariate analysis of NMR and FTIR data as a potential tool for the quality control of beer [J].
Duarte, IF ;
Barros, A ;
Almeida, C ;
Spraul, M ;
Gil, AM .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2004, 52 (05) :1031-1038