On chaos control and synchronization of the commensurate fractional order Liu system

被引:114
作者
Hegazi, A. S. [2 ]
Ahmed, E. [2 ]
Matouk, A. E. [1 ,2 ]
机构
[1] Hail Univ, Fac Sci, Dept Math, Hail 2440, Saudi Arabia
[2] Mansoura Univ, Dept Math, Fac Sci, Mansoura 35516, Egypt
关键词
Commensurate fractional order Liu system; Stability conditions; Chaos; Chaos control; Projective synchronization; EQUATIONS; ROSSLER; MODELS;
D O I
10.1016/j.cnsns.2012.09.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study chaos control and synchronization of the commensurate fractional order Liu system. Based on the stability theory of fractional order systems, the conditions of local stability of nonlinear three-dimensional commensurate fractional order systems are discussed. The existence and uniqueness of solutions for a class of commensurate fractional order Liu systems are investigated. We also obtain the necessary condition for the existence of chaotic attractors in the commensurate fractional order Liu system. The effect of fractional order on chaos control of this system is revealed by showing that the commensurate fractional order Liu system is controllable just in the fractional order case when using a specific choice of controllers. Moreover, we achieve chaos synchronization between the commensurate fractional order Liu system and its integer order counterpart via function projective synchronization. Numerical simulations are used to verify the analytical results. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1193 / 1202
页数:10
相关论文
共 43 条
[1]   Fractional-order dynamical models of love [J].
Ahmad, Wajdi M. ;
El-Khazali, Reyad .
CHAOS SOLITONS & FRACTALS, 2007, 33 (04) :1367-1375
[2]   On nonlinear control design for autonomous chaotic systems of integer and fractional orders [J].
Ahmad, WM ;
Harb, AM .
CHAOS SOLITONS & FRACTALS, 2003, 18 (04) :693-701
[3]   Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models [J].
Ahmed, E. ;
El-Sayed, A. M. A. ;
El-Saka, H. A. A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :542-553
[4]   On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rossler, Chua and Chen systems [J].
Ahmed, E. ;
El-Sayed, A. M. A. ;
El-Saka, Hala A. A. .
PHYSICS LETTERS A, 2006, 358 (01) :1-4
[5]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[6]   Robust synchronization of perturbed Chen's fractional-order chaotic systems [J].
Asheghan, Mohammad Mostafa ;
Beheshti, Mohammad Taghi Hamidi ;
Tavazoei, Mohammad Saleh .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (02) :1044-1051
[7]   FRACTIONAL ORDER STATE-EQUATIONS FOR THE CONTROL OF VISCOELASTICALLY DAMPED STRUCTURES [J].
BAGLEY, RL ;
CALICO, RA .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1991, 14 (02) :304-311
[8]   Synchronization of different fractional order chaotic systems using active control [J].
Bhalekar, Sachin ;
Daftardar-Gejji, Varsha .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) :3536-3546
[9]   Fractional ordered Liu system with time-delay [J].
Bhalekar, Sachin ;
Daftardar-Gejji, Varsha .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (08) :2178-2191
[10]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&