Breast cancer risk prediction and individualised screening based on common genetic variation and breast density measurement

被引:99
作者
Darabi, Hatef [1 ]
Czene, Kamila [1 ]
Zhao, Wanting [2 ]
Liu, Jianjun [2 ]
Hall, Per [1 ]
Humphreys, Keith [1 ]
机构
[1] Karolinska Inst, Dept Med Epidemiol & Biostat, S-17771 Stockholm, Sweden
[2] Genome Inst Singapore, Singapore 138672, Singapore
基金
瑞典研究理事会;
关键词
GENOME-WIDE ASSOCIATION; MAMMOGRAPHIC DENSITY; SUSCEPTIBILITY LOCI; POLYGENIC SUSCEPTIBILITY; CONFER SUSCEPTIBILITY; FAMILY-HISTORY; MODEL; VARIANTS; WOMEN; PERFORMANCE;
D O I
10.1186/bcr3110
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Introduction: Over the last decade several breast cancer risk alleles have been identified which has led to an increased interest in individualised risk prediction for clinical purposes. Methods: We investigate the performance of an up-to-date 18 breast cancer risk single-nucleotide polymorphisms (SNPs), together with mammographic percentage density (PD), body mass index (BMI) and clinical risk factors in predicting absolute risk of breast cancer, empirically, in a well characterised Swedish case-control study of postmenopausal women. We examined the efficiency of various prediction models at a population level for individualised screening by extending a recently proposed analytical approach for estimating number of cases captured. Results: The performance of a risk prediction model based on an initial set of seven breast cancer risk SNPs is improved by additionally including eleven more recently established breast cancer risk SNPs (P = 4.69 x 10(-4)). Adding mammographic PD, BMI and all 18 SNPs to a Swedish Gail model improved the discriminatory accuracy (the AUC statistic) from 55% to 62%. The net reclassification improvement was used to assess improvement in classification of women into low, intermediate, and high categories of 5-year risk (P = 8.93 x 10(-9)). For scenarios we considered, we estimated that an individualised screening strategy based on risk models incorporating clinical risk factors, mammographic density and SNPs, captures 10% more cases than a screening strategy using the same resources, based on age alone. Estimates of numbers of cases captured by screening stratified by age provide insight into how individualised screening programs might appear in practice. Conclusions: Taken together, genetic risk factors and mammographic density offer moderate improvements to clinical risk factor models for predicting breast cancer.
引用
收藏
页数:11
相关论文
共 43 条
[1]   Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2 [J].
Ahmed, Shahana ;
Thomas, Gilles ;
Ghoussaini, Maya ;
Healey, Catherine S. ;
Humphreys, Manjeet K. ;
Platte, Radka ;
Morrison, Jonathan ;
Maranian, Melanie ;
Pooley, Karen A. ;
Luben, Robert ;
Eccles, Diana ;
Evans, D. Gareth ;
Fletcher, Olivia ;
Johnson, Nichola ;
Silva, Isabel dos Santos ;
Peto, Julian ;
Stratton, Michael R. ;
Rahman, Nazneen ;
Jacobs, Kevin ;
Prentice, Ross ;
Anderson, Garnet L. ;
Rajkovic, Aleksandar ;
Curb, J. David ;
Ziegler, Regina G. ;
Berg, Christine D. ;
Buys, Saundra S. ;
McCarty, Catherine A. ;
Feigelson, Heather Spencer ;
Calle, Eugenia E. ;
Thun, Michael J. ;
Diver, W. Ryan ;
Bojesen, Stig ;
Nordestgaard, Borge G. ;
Flyger, Henrik ;
Doerk, Thilo ;
Schuermann, Peter ;
Hillemanns, Peter ;
Karstens, Johann H. ;
Bogdanova, Natalia V. ;
Antonenkova, Natalia N. ;
Zalutsky, Iosif V. ;
Bermisheva, Marina ;
Fedorova, Sardana ;
Khusnutdinova, Elza ;
Kang, Daehee ;
Yoo, Keun-Young ;
Noh, Dong Young ;
Ahn, Sei-Hyun ;
Devilee, Peter ;
van Asperen, Christi J. .
NATURE GENETICS, 2009, 41 (05) :585-590
[2]   Evaluation of breast cancer risk assessment packages in the family history evaluation and screening programme [J].
Amir, E ;
Evans, DG ;
Shenton, A ;
Lalloo, F ;
Moran, A ;
Boggis, C ;
Wilson, M ;
Howell, A .
JOURNAL OF MEDICAL GENETICS, 2003, 40 (11) :807-814
[3]   The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions [J].
Antoniou, A. C. ;
Cunningham, A. P. ;
Peto, J. ;
Evans, D. G. ;
Lalloo, F. ;
Narod, S. A. ;
Risch, H. A. ;
Eyfjord, J. E. ;
Hopper, J. L. ;
Southey, M. C. ;
Olsson, H. ;
Johannsson, O. ;
Borg, A. ;
Passini, B. ;
Radice, P. ;
Manoukian, S. ;
Eccles, D. M. ;
Tang, N. ;
Olah, E. ;
Anton-Culver, H. ;
Warner, E. ;
Lubinski, J. ;
Gronwald, J. ;
Gorski, B. ;
Tryggvadottir, L. ;
Syrjakoski, K. ;
Kallioniemi, O-P ;
Eerola, H. ;
Nevanlinna, H. ;
Pharoah, P. D. P. ;
Easton, D. F. .
BRITISH JOURNAL OF CANCER, 2008, 98 (08) :1457-1466
[4]   Body size, mammographic density, and breast cancer risk [J].
Boyd, Norman F. ;
Martin, Lisa J. ;
Sun, Limei ;
Guo, Helen ;
Chiarelli, Anna ;
Hislop, Greg ;
Yaffe, Martin ;
Minkini, Salomon .
CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2006, 15 (11) :2086-2092
[5]   Mammographic density and breast cancer risk: current understanding and future prospects [J].
Boyd, Norman F. ;
Martin, Lisa J. ;
Yaffe, Martin J. ;
Minkin, Salomon .
BREAST CANCER RESEARCH, 2011, 13 (06)
[6]   ESTIMATING THE POPULATION ATTRIBUTABLE RISK FOR MULTIPLE RISK-FACTORS USING CASE-CONTROL DATA [J].
BRUZZI, P ;
GREEN, SB ;
BYAR, DP ;
BRINTON, LA ;
SCHAIRER, C .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 1985, 122 (05) :904-913
[7]   Symmetry of projection in the quantitative analysis of mammographic images [J].
Byng, JW ;
Boyd, NF ;
Little, L ;
Lockwood, G ;
Fishell, E ;
Jong, RA ;
Yaffe, MJ .
EUROPEAN JOURNAL OF CANCER PREVENTION, 1996, 5 (05) :319-327
[8]   Projecting absolute invasive breast cancer risk in white women with a model that includes mammographic density [J].
Chen, Jinbo ;
Pee, David ;
Ayyagari, Rajeev ;
Graubard, Barry ;
Schairer, Catherine ;
Byrne, Celia ;
Benichou, Jacques ;
Gail, Mitchell H. .
JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2006, 98 (17) :1215-1226
[9]   A common coding variant in CASP8 is associated with breast cancer risk [J].
Cox, Angela ;
Dunning, Alison M. ;
Garcia-Closas, Montserrat ;
Balasubramanian, Sabapathy ;
Reed, Malcolm W. R. ;
Pooley, Karen A. ;
Scollen, Serena ;
Baynes, Caroline ;
Ponder, Bruce A. J. ;
Chanock, Stephen ;
Lissowska, Jolanta ;
Brinton, Louise ;
Peplonska, Beata ;
Southey, Melissa C. ;
Hopper, John L. ;
McCredie, Margaret R. E. ;
Giles, Graham G. ;
Fletcher, Olivia ;
Johnson, Nichola ;
dos Santos Silva, Isabel ;
Gibson, Lorna ;
Bojesen, Stig E. ;
Nordestgaard, Borge G. ;
Axelsson, Christen K. ;
Torres, Diana ;
Hamann, Ute ;
Justenhoven, Christina ;
Brauch, Hiltrud ;
Chang-Claude, Jenny ;
Kropp, Silke ;
Risch, Angela ;
Wang-Gohrke, Shan ;
Schuermann, Peter ;
Bogdanova, Natalia ;
Doerk, Thilo ;
Fagerholm, Rainer ;
Aaltonen, Kirsimari ;
Blomqvist, Carl ;
Nevanlinna, Heli ;
Seal, Sheila ;
Renwick, Anthony ;
Stratton, Michael R. ;
Rahman, Nazneen ;
Sangrajrang, Suleeporn ;
Hughes, David ;
Odefrey, Fabrice ;
Brennan, Paul ;
Spurdle, Amanda B. ;
Chenevix-Trench, Georgia ;
Beesley, Jonathan .
NATURE GENETICS, 2007, 39 (03) :352-358
[10]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845