4-coloring H-free graphs when H is small

被引:16
作者
Golovach, Petr A. [1 ]
Paulusma, Daniel [1 ]
Song, Jian [1 ]
机构
[1] Univ Durham, Sci Labs, Sch Engn & Comp Sci, Durham DH1 3LE, England
基金
英国工程与自然科学研究理事会;
关键词
Graph coloring; Forbidden induced subgraph; Linear forest; Polynomial-time algorithm; NP-COMPLETENESS; COLORING GRAPHS; K-COLORABILITY; COMPLEXITY; 3-COLORABILITY; ALGORITHM;
D O I
10.1016/j.dam.2012.08.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The k-COLORING problem is to test whether a graph can be colored with at most k colors such that no two adjacent vertices receive the same color. If a graph G does not contain a graph H as an induced subgraph, then G is called H-free. For any fixed graph H on at most six vertices, it is known that 3-COLORING is polynomial-time solvable on H-free graphs whenever H is a linear forest, and NP-complete otherwise. By solving the missing case P-2 + P-3, we prove the same result for 4-COLORING provided that H is a fixed graph on at most five vertices. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:140 / 150
页数:11
相关论文
共 26 条
[11]  
Golovach Petr A., 2011, Fundamentals of Computation Theory. Proceedings 18th International Symposium, FCT 2011, P193, DOI 10.1007/978-3-642-22953-4_17
[12]  
Grotschel M., 1984, ANN DISCRETE MATH, V21, P325, DOI [10.1016/S0304-0208(08)72943-8, DOI 10.1016/S0304-0208(08)72943-8]
[13]   Deciding k-Colorability of P 5-Free Graphs in Polynomial Time [J].
Hoang, Chinh T. ;
Kaminski, Marcin ;
Lozin, Vadim ;
Sawada, Joe ;
Shu, Xiao .
ALGORITHMICA, 2010, 57 (01) :74-81
[14]   THE NP-COMPLETENESS OF EDGE-COLORING [J].
HOLYER, I .
SIAM JOURNAL ON COMPUTING, 1981, 10 (04) :718-720
[15]  
Kaminski M., 2007, ALGORITHMIC OPER RES, V21
[16]  
Kral D., 2001, LECT NOTES COMPUT SC, V2001, P254, DOI DOI 10.1007/3-540-45477-223
[17]   On the complexity of 4-coloring graphs without long induced paths [J].
Le, Van Bang ;
Randerath, Bert ;
Schiermeyer, Ingo .
THEORETICAL COMPUTER SCIENCE, 2007, 389 (1-2) :330-335
[18]   NP COMPLETENESS OF FINDING THE CHROMATIC INDEX OF REGULAR GRAPHS [J].
LEVEN, D ;
GALIL, Z .
JOURNAL OF ALGORITHMS, 1983, 4 (01) :35-44
[19]  
Lozin V., 2007, Contrib. Discrete Math, V2, P61
[20]   On the NP-completeness of the k-colorability problem for triangle-free graphs [J].
Maffray, F ;
Preissmann, M .
DISCRETE MATHEMATICS, 1996, 162 (1-3) :313-317