decoupleR: ensemble of computational methods to infer biological activities from omics data

被引:290
作者
Badia-i-Mompel, Pau [1 ,2 ,3 ]
Santiago, Jesus Velez [2 ]
Braunger, Jana [1 ,2 ,3 ]
Geiss, Celina [1 ,2 ,3 ]
Dimitrov, Daniel [1 ,2 ,3 ]
Mueller-Dott, Sophia [1 ,2 ,3 ]
Taus, Petr [4 ]
Dugourd, Aurelien [1 ,2 ,3 ]
Holland, Christian H. [1 ,2 ,3 ]
Flores, Ricardo O. Ramirez [2 ]
Saez-Rodriguez, Julio [1 ,2 ,3 ]
机构
[1] Heidelberg Univ, Fac Med, D-69120 Heidelberg, Germany
[2] Heidelberg Univ Hosp, Inst Computat Biomed, BioQuant, D-69120 Heidelberg, Germany
[3] Heidelberg Univ Hosp, Inst Computat Biomed, BioQuant, D-69120 Heidelberg, Germany
[4] Masaryk Univ, Cent European Inst Technol, Brno 601, Czech Republic
来源
BIOINFORMATICS ADVANCES | 2022年 / 2卷 / 01期
基金
欧盟地平线“2020”;
关键词
D O I
10.1093/bioadv/vbac016
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many methods allow us to extract biological activities from omics data using information from prior knowledge resources, reducing the dimensionality for increased statistical power and better interpretability. Here, we present decoupleR, a Bioconductor and Python package containing computational methods to extract these activities within a unified framework. decoupleR allows us to flexibly run any method with a given resource, including methods that leverage mode of regulation and weights of interactions, which are not present in other frameworks. Moreover, it leverages OmniPath, a meta-resource comprising over 100 databases of prior knowledge. Using decoupleR, we evaluated the performance of methods on transcriptomic and phospho-proteomic perturbation experiments. Our findings suggest that simple linear models and the consensus score across top methods perform better than other methods at predicting perturbed regulators
引用
收藏
页数:3
相关论文
共 13 条
[1]  
Aibar S, 2017, NAT METHODS, V14, P1083, DOI [10.1038/NMETH.4463, 10.1038/nmeth.4463]
[2]   Combining multiple tools outperforms individual methods in gene set enrichment analyses [J].
Alhamdoosh, Monther ;
Ng, Milica ;
Wilson, Nicholas J. ;
Sheridan, Julie M. ;
Huynh, Huy ;
Wilson, Michael J. ;
Ritchie, Matthew E. .
BIOINFORMATICS, 2017, 33 (03) :414-424
[3]   Functional characterization of somatic mutations in cancer using network-based inference of protein activity [J].
Alvarez, Mariano J. ;
Shen, Yao ;
Giorgi, Federico M. ;
Lachmann, Alexander ;
Ding, B. Belinda ;
Ye, B. Hilda ;
Califano, Andrea .
NATURE GENETICS, 2016, 48 (08) :838-+
[4]  
[Anonymous], 2021, bioRxiv, DOI DOI 10.1101/060012
[5]  
Dugourd Aurelien, 2019, Curr Opin Syst Biol, V15, P82, DOI 10.1016/j.coisb.2019.04.002
[6]   Benchmark and integration of resources for the estimation of human transcription factor activities [J].
Garcia-Alonso, Luz ;
Holland, Christian H. ;
Ibrahim, Mahmoud M. ;
Turei, Denes ;
Saez-Rodriguez, Julio .
GENOME RESEARCH, 2019, 29 (08) :1363-1375
[7]   Bioconductor's EnrichmentBrowser: seamless navigation through combined results of set- & network-based enrichment analysis [J].
Geistlinger, Ludwig ;
Csaba, Gergely ;
Zimmer, Ralf .
BMC BIOINFORMATICS, 2016, 17
[8]   GSVA: gene set variation analysis for microarray and RNA-Seq data [J].
Haenzelmann, Sonja ;
Castelo, Robert ;
Guinney, Justin .
BMC BIOINFORMATICS, 2013, 14
[9]   Benchmarking substrate-based kinase activity inference using phosphoproteomic data [J].
Hernandez-Armenta, Claudia ;
Ochoa, David ;
Goncalves, Emanuel ;
Saez-Rodriguez, Julio ;
Beltrao, Pedro .
BIOINFORMATICS, 2017, 33 (12) :1845-1851
[10]   Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data [J].
Holland, Christian H. ;
Tanevski, Jovan ;
Perales-Paton, Javier ;
Gleixner, Jan ;
Kumar, Manu P. ;
Mereu, Elisabetta ;
Joughin, Brian A. ;
Stegle, Oliver ;
Lauffenburger, Douglas A. ;
Heyn, Holger ;
Szalai, Bence ;
Saez-Rodriguez, Julio .
GENOME BIOLOGY, 2020, 21 (01)