Homodyne coherent quantum noise cancellation in a hybrid optomechanical force sensor

被引:16
作者
Allahverdi, H. [1 ]
Motazedifard, Ali [2 ,3 ,4 ]
Dalafi, A. [1 ]
Vitali, D. [5 ,6 ,7 ]
Naderi, M. H. [2 ,3 ]
机构
[1] Shahid Beheshti Univ, Laser & Plasma Res Inst, Tehran 1983969411, Iran
[2] Univ Isfahan, Dept Phys, Esfahan 8174673441, Iran
[3] Univ Isfahan, Dept Phys, Quantum Opt Grp, Esfahan 8174673441, Iran
[4] Iranian Ctr Quantum Technol ICQT, Quantum Sensing Lab, Quantum Metrol Grp, Tehran 1599814713, Iran
[5] Univ Camerino, Sch Sci & Technol, Phys Div, I-62032 Camerino, Macerata, Italy
[6] INFN, Sez Perugia, Via A Pascoli, I-06123 Perugia, Italy
[7] CNR INO, Largo Enrico Fermi 6, I-50125 Florence, Italy
关键词
ACTION-EVADING MEASUREMENT; CAVITY; MOTION;
D O I
10.1103/PhysRevA.106.023107
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper we propose an experimentally viable scheme to enhance the sensitivity of force detection in a hybrid optomechanical setup assisted by squeezed vacuum injection, beyond the standard quantum limit (SQL). The scheme is based on a combination of the coherent quantum noise cancellation (CQNC) strategy with a variational homodyne detection of the cavity output spectrum in which the phase of the local oscillator is optimized. In CQNC, realizing a negative-mass oscillator in the system leads to exact cancellation of the backaction noise from the mechanics due to destructive quantum interference. Squeezed vacuum injection enhances this cancellation and allows sub-SQL sensitivity to be reached in a wide frequency band and at much lower input laser powers. We show here that the adoption of variational homodyne readout enables us to enhance this noise cancellation up to 40 dB compared to the standard case of detection of the optical output phase quadrature, leading to a remarkable force sensitivity of the order of 10-19 N/ Hz, about 70% enhancement compared to the standard case. Moreover, we show that at nonzero cavity detuning, the signal response can be amplified at a level three to five times larger than that in the standard case without variational homodyne readout, improving the signal-to-noise ratio. Finally, the variational readout CQNC developed in this paper may be applied to other optomechanical-like platforms such as levitated systems and multimode optomechanical arrays or crystals as well as Josephson-based optomechanical systems.
引用
收藏
页数:18
相关论文
共 71 条
[1]   Quantum Backaction on Kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector [J].
Acernese, F. ;
Agathos, M. ;
Aiello, L. ;
Ain, A. ;
Allocca, A. ;
Amato, A. ;
Ansoldi, S. ;
Antier, S. ;
Arene, M. ;
Arnaud, N. ;
Ascenzi, S. ;
Astone, P. ;
Aubin, F. ;
Babak, S. ;
Badaracco, F. ;
Bader, M. K. M. ;
Bagnasco, S. ;
Baird, J. ;
Ballardin, G. ;
Baltus, G. ;
Barbieri, C. ;
Barneo, P. ;
Barone, F. ;
Barsuglia, M. ;
Barta, D. ;
Basti, A. ;
Bawaj, M. ;
Bazzan, M. ;
Bejger, M. ;
Belahcene, I ;
Bernuzzi, S. ;
Bersanetti, D. ;
Bertolini, A. ;
Bischi, M. ;
Bitossi, M. ;
Bizouard, M-A ;
Blanch, O. ;
Bobba, F. ;
Boer, M. ;
Bogaert, G. ;
Boldrini, M. ;
Bondu, F. ;
Bonnand, R. ;
Boom, B. A. ;
Boschi, V ;
Boudart, V ;
Bouffanais, Y. ;
Bozzi, A. ;
Bradaschia, C. ;
Branchesi, M. .
PHYSICAL REVIEW LETTERS, 2020, 125 (13)
[2]  
Andrews RW, 2014, NAT PHYS, V10, P321, DOI [10.1038/NPHYS2911, 10.1038/nphys2911]
[3]   Converting microwave and telecom photons with a silicon photonic nanomechanical interface [J].
Arnold, G. ;
Wulf, M. ;
Barzanjeh, S. ;
Redchenko, E. S. ;
Rueda, A. ;
Hease, W. J. ;
Hassani, F. ;
Fink, J. M. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[4]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[5]   Atom-based coherent quantum-noise cancellation in optomechanics [J].
Bariani, F. ;
Seok, H. ;
Singh, S. ;
Vengalattore, M. ;
Meystre, P. .
PHYSICAL REVIEW A, 2015, 92 (04)
[6]   Stationary entangled radiation from micromechanical motion [J].
Barzanjeh, S. ;
Redchenko, E. S. ;
Peruzzo, M. ;
Wulf, M. ;
Lewis, D. P. ;
Arnold, G. ;
Fink, J. M. .
NATURE, 2019, 570 (7762) :480-+
[7]   Mechanical on-chip microwave circulator [J].
Barzanjeh, S. ;
Wulf, M. ;
Peruzzo, M. ;
Kalaee, M. ;
Dieterle, P. B. ;
Painter, O. ;
Fink, J. M. .
NATURE COMMUNICATIONS, 2017, 8
[8]   Force Sensing in an Optomechanical System with Feedback-Controlled In-Loop Light [J].
Bemani, F. ;
Cernotik, O. ;
Ruppert, L. ;
Vitali, D. ;
Filip, R. .
PHYSICAL REVIEW APPLIED, 2022, 17 (03)
[9]   Quantum correlations in optomechanical crystals [J].
Bemani, F. ;
Roknizadeh, R. ;
Motazedifard, A. ;
Naderi, M. H. ;
Vitali, D. .
PHYSICAL REVIEW A, 2019, 99 (06)
[10]   Synchronization dynamics of two nanomechanical membranes within a Fabry-Perot cavity [J].
Bemani, F. ;
Motazedifard, Ali ;
Roknizadeh, R. ;
Naderi, M. H. ;
Vitali, D. .
PHYSICAL REVIEW A, 2017, 96 (02)