Differential Search Algorithm for Multiobjective Problems

被引:15
作者
Kumar, Vijay [1 ]
Chhabra, Jitender Kumar [2 ]
Kumar, Dinesh [3 ]
机构
[1] Manipal Univ, Comp Sci & Engn Dept, Jaipur, Rajasthan, India
[2] Natl Inst Technol, Dept Comp Engn, Kurukshetra, Haryana, India
[3] GJUS&T, Comp Sci & Engn Dept, Hisar, Haryana, India
来源
INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION AND CONVERGENCE (ICCC 2015) | 2015年 / 48卷
关键词
Multiobjective optimization; Metaheuristic; Pareto Optimal; Differential search algorithm; EVOLUTIONARY ALGORITHMS; OPTIMIZATION;
D O I
10.1016/j.procs.2015.04.105
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a novel Differential Search Algorithm (DSA) approach is proposed to solve multiobjective optimization problems, called Multiobjective Differential Search Algorithm (MODSA). MODSA utilizes the concept of Pareto dominance to determine the direction of a super-organism and it maintains non-dominated solutions in the external repository. This approach also uses the external repository of super-organisms that is used to guide other super-organisms. It guides the artificial organisms to search towards non-crowding and external regions of Pareto front. The performance of proposed approach is evaluated against the other well-known multiobjective optimization algorithms over a set of multiobjective benchmark test functions. Experimental results reveal that the MODSA outperforms the other competitive algorithms for benchmark test functions. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:22 / 28
页数:7
相关论文
共 9 条
[1]  
[Anonymous], 2014, INT J IND ENG COMP, DOI DOI 10.5267/J.IJIEC.2013.08.003
[2]   Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm [J].
Civicioglu, Pinar .
COMPUTERS & GEOSCIENCES, 2012, 46 :229-247
[3]   Handling multiple objectives with particle swarm optimization [J].
Coello, CAC ;
Pulido, GT ;
Lechuga, MS .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (03) :256-279
[4]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[5]   jMetal: A Java']Java framework for multi-objective optimization [J].
Durillo, Juan J. ;
Nebro, Antonio J. .
ADVANCES IN ENGINEERING SOFTWARE, 2011, 42 (10) :760-771
[6]   Emergent nature inspired algorithms for multi-objective optimization [J].
Figueira, Jose Rui ;
Talbi, El-Ghazali .
COMPUTERS & OPERATIONS RESEARCH, 2013, 40 (06) :1521-1523
[7]   Multiobjective evolutionary algorithms: A survey of the state of the art [J].
Zhou, Aimin ;
Qu, Bo-Yang ;
Li, Hui ;
Zhao, Shi-Zheng ;
Suganthan, Ponnuthurai Nagaratnam ;
Zhang, Qingfu .
SWARM AND EVOLUTIONARY COMPUTATION, 2011, 1 (01) :32-49
[8]   Comparison of Multiobjective Evolutionary Algorithms: Empirical Results [J].
Zitzler, Eckart ;
Deb, Kalyanmoy ;
Thiele, Lothar .
EVOLUTIONARY COMPUTATION, 2000, 8 (02) :173-195
[9]  
Zou W., 2011, DISCRETE DYN NAT SOC, V2011, P1, DOI [10.1155/2011/569784, DOI 10.1155/2011/569784]