ASSOCIATION BETWEEN TUMOR HETEROGENEITY AND OVERALL SURVIVAL IN PATIENTS WITH NON-SMALL CELL LUNG CANCER

被引:6
作者
Song, Jiangdian [1 ,2 ]
Dong, Di [2 ]
Huang, Yanqi [3 ]
Liu, Zaiyi [3 ]
Tian, Jie [2 ]
机构
[1] Northeastern Univ, Sino Dutch Biomed & Informat Engn Sch, Boston, MA 02115 USA
[2] Chinese Acad Sci, Inst Automat, Key Lab Mol Imaging, Beijing 100864, Peoples R China
[3] Guangdong Gen Hosp, Guangdong Acad Med Sci, Dept Radiol, Guangzhou, Guangdong, Peoples R China
来源
2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2016年
关键词
Tumor heterogeneity; prognosis; non-small cell lung cancer; texture; radiomics; CT TEXTURE; NODULES;
D O I
10.1109/ISBI.2016.7493493
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, a radiomics approach was proposed to determine whether the tumor heterogeneity of non-small cell lung cancer (NSCLC), which was measured by the texture on computed tomography (CT), could make an independent prediction of overall survival. A primary dataset contained 72 patients (mean survival, 15.9 months) with pathologic diagnosis of NSCLC and a validation dataset contained 67 NSCLC (mean survival, 18.1 months) patients which were used for prognosis trial. The experiment results indicated that the features: "energy of run-length (ERL)" (hazard ratio [HR]: 0.55, 95% confidence interval [CI]: (0.34, 0.89), P = 0.014) and "long-run high gray level emphasis of run-length (LRHGLERL)" (HR: 0.50, 95% CI: (0.32, 0.80), P = 0.005) were significantly associated with overall survival in the primary dataset, and these two texture features also make an consistent performance on the validation cohort. Our study further supported that the quantitative measurement of tumor heterogeneity can be associated with prognosis of NSCLC.
引用
收藏
页码:1249 / 1252
页数:4
相关论文
共 16 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[3]   Reproducibility and Prognosis of Quantitative Features Extracted from CT Images [J].
Balagurunathan, Yoganand ;
Gu, Yuhua ;
Wang, Hua ;
Kumar, Virendra ;
Grove, Olya ;
Hawkins, Sam ;
Kim, Jongphil ;
Goldgof, Dmitry B. ;
Hall, Lawrence O. ;
Gatenby, Robert A. ;
Gillies, Robert J. .
TRANSLATIONAL ONCOLOGY, 2014, 7 (01) :72-87
[4]   CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma [J].
Coroller, Thibaud P. ;
Grossmann, Patrick ;
Hou, Ying ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Hermann, Gretchen ;
Lambin, Philippe ;
Haibe-Kains, Benjamin ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
RADIOTHERAPY AND ONCOLOGY, 2015, 114 (03) :345-350
[5]   Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012 [J].
Ferlay, J. ;
Steliarova-Foucher, E. ;
Lortet-Tieulent, J. ;
Rosso, S. ;
Coebergh, J. W. W. ;
Comber, H. ;
Forman, D. ;
Bray, F. .
EUROPEAN JOURNAL OF CANCER, 2013, 49 (06) :1374-1403
[6]   Non-Small Cell Lung Cancer: Histopathologic Correlates for Texture Parameters at CT [J].
Ganeshan, Balaji ;
Goh, Vicky ;
Mandeville, Henry C. ;
Quan Sing Ng ;
Hoskin, Peter J. ;
Miles, Kenneth A. .
RADIOLOGY, 2013, 266 (01) :326-336
[7]   Assessment of Response to Tyrosine Kinase Inhibitors in Metastatic Renal Cell Cancer: CT Texture as a Predictive Biomarker [J].
Goh, Vicky ;
Ganeshan, Balaji ;
Nathan, Paul ;
Juttla, Jaspal K. ;
Vinayan, Anup ;
Miles, Kenneth A. .
RADIOLOGY, 2011, 261 (01) :165-171
[8]   Quantitative Computed Tomographic Descriptors Associate Tumor Shape Complexity and Intratumor Heterogeneity with Prognosis in Lung Adenocarcinoma [J].
Grove, Olya ;
Berglund, Anders E. ;
Schabath, Matthew B. ;
Aerts, Hugo J. W. L. ;
Dekker, Andre ;
Wang, Hua ;
Velazquez, Emmanuel Rios ;
Lambin, Philippe ;
Gu, Yuhua ;
Balagurunathan, Yoganand ;
Eikman, Edward ;
Gatenby, Robert A. ;
Eschrich, Steven ;
Gillies, Robert J. .
PLOS ONE, 2015, 10 (03)
[9]   Assessment of Primary Colorectal Cancer Heterogeneity by Using Whole-Tumor Texture Analysis: Contrast-enhanced CT Texture as a Biomarker of 5-year Survival [J].
Ng, Francesca ;
Ganeshan, Balaji ;
Kozarski, Robert ;
Miles, Kenneth A. ;
Goh, Vicky .
RADIOLOGY, 2013, 266 (01) :177-184
[10]   Cancer statistics, 2013 [J].
Siegel, Rebecca ;
Naishadham, Deepa ;
Jemal, Ahmedin .
CA-A CANCER JOURNAL FOR CLINICIANS, 2013, 63 (01) :11-30