MODIFIED SCATTERING OPERATOR FOR THE DERIVATIVE NONLINEAR SCHRODINGER EQUATION

被引:10
作者
Guo, Zihua [1 ,2 ]
Hayashi, Nakao [3 ]
Lin, Yiquan [1 ]
Naumkin, Pavel I. [4 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
[3] Osaka Univ, Grad Sch Sci, Dept Math, Osaka, Toyonaka 5600043, Japan
[4] UNAM, Ctr Ciencias Matemat, Morelia 58089, Michoacan, Mexico
关键词
modified scatttering operator; derivative nonlinear Schrodinger equation; INTEGRABILITY; POSEDNESS; RANGE;
D O I
10.1137/12089956X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the derivative nonlinear Schrodinger equation i partial derivative(t)u + 1/2 partial derivative(2)(x)u = i partial derivative(x)(vertical bar u vertical bar(2)u), t is an element of R, x is an element of R. Our purpose is to prove that the modified scattering operator is defined as a map from the neighborhood of the origin in H-1,H-alpha+gamma to the neighborhood of the origin in H-1,H-alpha, where alpha > 1/2 and gamma > 0 is small. The weighted Sobolev space is defined by H-m,H-s = {phi is an element of L-2; parallel to(1 + x(2))(s/2) (1 - partial derivative(2)(x))(m/2) phi parallel to(L2) < infinity}.
引用
收藏
页码:3854 / 3871
页数:18
相关论文
共 21 条
[1]  
[Anonymous], 1997, DISCRETE CONT DYN-A
[2]   Ill-posedness for the derivative Schrodinger and generalized Benjamin-Ono equations [J].
Biagioni, HA ;
Linares, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (09) :3649-3659
[3]   A refined global well-posedness result for Schrodinger equations with derivative [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 34 (01) :64-86
[4]   MODIFIED WAVE-OPERATORS FOR THE DERIVATIVE NONLINEAR SCHRODINGER-EQUATION [J].
HAYASHI, N ;
OZAWA, T .
MATHEMATISCHE ANNALEN, 1994, 298 (03) :557-576
[5]  
Hayashi N, 1998, ANN I H POINCARE-PHY, V68, P159
[6]  
HAYASHI N, 1988, ANN I H POINCARE-PHY, V48, P17
[7]   THE INITIAL-VALUE PROBLEM FOR THE DERIVATIVE NONLINEAR SCHRODINGER-EQUATION IN THE ENERGY SPACE [J].
HAYASHI, N .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (07) :823-833
[8]   FINITE-ENERGY SOLUTIONS OF NONLINEAR SCHRODINGER-EQUATIONS OF DERIVATIVE TYPE [J].
HAYASHI, N ;
OZAWA, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (06) :1488-1503
[9]   Domain and range of the modified wave operator for Schrodinger equations with a critical nonlinearity [J].
Hayashi, Nakao ;
Naumkin, Pavel I. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 267 (02) :477-492
[10]  
Kaup DJ, 1978, J MATH PHYS, V9, P798