On the moduli scheme of stable sheaves supported on cubic space curves

被引:21
作者
Freiermuth, HG
Trautmann, G
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] Univ Kaiserslautern, Fachbereich Math, D-67663 Kaiserslautern, Germany
关键词
D O I
10.1353/ajm.2004.0013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the geometry of the Simpson moduli space M-P(P-3) of stable sheaves with Hilbert polynomial P(m) = 3m + 1. It consists of two smooth, rational components M-0 and M-1 of dimensions 12 and 13 intersecting each other transversally along an 11-dimensional, smooth. rational subvariety. The component M-0 is isomorphic to the closure of the space of twisted xubics in the Hilbert scheme Hilb(P) (P-3) and M-1 is isomorphic to the incidence variety of the relative Hilbert scheme of cubic Curves contained in planes. In order to obtain the result and to classify the sheaves, we characterize M-p(P-3) as geometric quotient of a certain matrix parameter space by a nonreductive group. We also compute the Betti numbers of the Chow groups of the moduli space.
引用
收藏
页码:363 / 393
页数:31
相关论文
共 12 条
[1]  
[Anonymous], 1994, PUBL MATH
[2]   Moduli spaces of decomposable morphisms of sheaves and quotients by non-reductive groups [J].
Drézet, JM ;
Trautmann, G .
ANNALES DE L INSTITUT FOURIER, 2003, 53 (01) :107-+
[3]   ON THE CHOW RING OF A GEOMETRIC QUOTIENT [J].
ELLINGSRUD, G ;
STROMME, SA .
ANNALS OF MATHEMATICS, 1989, 130 (01) :159-187
[4]  
Freiermuth H. G., 2000, with Hilbert Polynomial
[5]  
Fulton W., 1984, ERGEB MATH GRENZGEB, V2
[6]  
HARRIS J, 1982, LECT NOTES MONTREAL, V35
[7]  
Huybrechts D., 1997, Aspects of Mathematics, V31
[8]  
Le Potier J., 1993, REV ROUMAINE MATH PU, V38, P635
[9]  
LEPOTIER J, 1992, SEM GEOM ALG JUSS
[10]  
OKONEK C., 1980, PROGR MATH, V3