Connes Integration Formula for the Noncommutative Plane

被引:6
作者
Sukochev, F. [1 ]
Zanin, D. [1 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Kensington, NSW 2052, Australia
关键词
GEOMETRY; TRACES;
D O I
10.1007/s00220-017-3008-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Our aim is to prove the integration formula on the noncommutative (Moyal) plane in terms of singular traces a la Connes.
引用
收藏
页码:449 / 466
页数:18
相关论文
共 20 条
  • [1] [Anonymous], 1994, NONCOMMUTATIVE GEOME
  • [2] Type II non-commutative geometry. I. Dixmier trace in von Neumann algebras
    Benameur, MT
    Fack, T
    [J]. ADVANCES IN MATHEMATICS, 2006, 199 (01) : 29 - 87
  • [3] Index Theory for Locally Compact Noncommutative Geometries
    Carey, A. L.
    Gayral, V.
    Rennie, A.
    Sukochev, F. A.
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 231 (1085) : 1 - +
  • [4] Integration on locally compact noncommutative spaces
    Carey, A. L.
    Gayral, V.
    Rennie, A.
    Sukochev, F. A.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (02) : 383 - 414
  • [5] THE ACTION FUNCTIONAL IN NON-COMMUTATIVE GEOMETRY
    CONNES, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 117 (04) : 673 - 683
  • [6] DIXMIER J, 1966, CR ACAD SCI A MATH, V262, P1107
  • [7] Commutator structure of operator ideals
    Dykema, K
    Figiel, T
    Weiss, G
    Wodzicki, M
    [J]. ADVANCES IN MATHEMATICS, 2004, 185 (01) : 1 - 79
  • [8] On summability of distributions and spectral geometry
    Estrada, R
    Gracia-Bondia, JM
    Varilly, JC
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 191 (01) : 219 - 248
  • [9] Moyal planes are spectral triples
    Gayral, V
    Gracia-Bondía, JM
    Iochum, B
    Schücker, T
    Várilly, JC
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 246 (03) : 569 - 623
  • [10] Gracia-Bondia J.M., 2001, Elements of Noncommutative Geometry