THE TURAN NUMBER OF BERGE-K4 IN TRIPLE SYSTEMS

被引:7
作者
Gyarfas, Andras [1 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1053 Budapest, Hungary
关键词
Turan number; triple system; Berge-G hypergraphs; 3-UNIFORM HYPERGRAPHS;
D O I
10.1137/18M1204048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Berge-K-4 in a triple system is a configuration with four vertices v(1), v(2), v(3), v(4) and six distinct triples {e(ij) : 1 <= i < j <= 4} such that {v(i), v(j)} subset of e(ij) for every 1 <= i < j <= 4. We denote by B the set of Berge-K-4 configurations. A triple system is B-free if it does not contain any member of B. We prove that the maximum number of triples in a B-free triple system on n >= 6 points is obtained by the balanced complete 3-partite triple system: all triples {abc : a is an element of A, b is an element of B, c is an element of C} where A, B, C is a partition of n points with [n/3] = vertical bar A vertical bar <= vertical bar B vertical bar <= vertical bar C vertical bar = [n/3].
引用
收藏
页码:383 / 392
页数:10
相关论文
共 18 条
  • [1] Many T copies in H-free graphs
    Alon, Noga
    Shikhelman, Clara
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 121 : 146 - 172
  • [2] [Anonymous], [No title captured]
  • [3] A note on Ramsey numbers for Berge-G hypergraphs
    Axenovich, Maria
    Gyarfas, Andras
    [J]. DISCRETE MATHEMATICS, 2019, 342 (05) : 1245 - 1252
  • [4] FRANKL P., 2003, TRIANGLE FREE TRIPLE
  • [5] On 3-uniform hypergraphs without a cycle of a given length
    Furedi, Zoltan
    Ozkahya, Lale
    [J]. DISCRETE APPLIED MATHEMATICS, 2017, 216 : 582 - 588
  • [6] GERBNER D., 2018, ARXIV1808108442V1
  • [7] GERBNER D., 2018, ARXIV180507520V2
  • [8] GERBNER D., 2017, ARXIV170504134V2
  • [9] EXTREMAL RESULTS FOR BERGE HYPERGRAPHS
    Gerbner, Daniel
    Palmer, Cory
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (04) : 2314 - 2327
  • [10] GROSZ D., 2017, ARXIV180301953