L1 convergence of the reconstruction formula for the potential function

被引:35
作者
Chen, YT [1 ]
Cheng, YH [1 ]
Law, CK [1 ]
Tsay, J [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
关键词
inverse nodal problem; potential function; reconstruction formula;
D O I
10.1090/S0002-9939-02-06297-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that the potential function of the Sturm-Liouville problem can be reconstructed from the nodal data by a pointwise limit. We show that this convergence is in fact L-1.
引用
收藏
页码:2319 / 2324
页数:6
相关论文
共 13 条
[1]   Inverse problems: recovery of BV coefficients from nodes [J].
Hald, OH ;
McLaughlin, JR .
INVERSE PROBLEMS, 1998, 14 (02) :245-273
[2]   SOLUTIONS OF INVERSE NODAL PROBLEMS [J].
HALD, OH ;
MCLAUGHLIN, JR .
INVERSE PROBLEMS, 1989, 5 (03) :307-347
[3]  
HALD OH, 1996, AMS MEMOIR, V119
[4]   The inverse nodal problem on the smoothness of the potential function [J].
Law, CK ;
Shen, CL ;
Yang, CF .
INVERSE PROBLEMS, 1999, 15 (01) :253-263
[5]   On the well-posedness of the inverse nodal problem [J].
Law, CK ;
Tsay, J .
INVERSE PROBLEMS, 2001, 17 (05) :1493-1512
[6]   The inverse nodal problem on the smoothness of the potential function (vol 15, pg 253, 1999) [J].
Law, CK ;
Shen, CL ;
Yang, CF .
INVERSE PROBLEMS, 2001, 17 (02) :361-363
[7]  
Lee CJ, 1997, INVERSE PROBLEMS WAV, P325
[8]   INVERSE SPECTRAL THEORY USING NODAL POINTS AS DATA - A UNIQUENESS RESULT [J].
MCLAUGHLIN, JR .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 73 (02) :354-362
[9]  
McLaughlin JR, 2000, SURVEYS ON SOLUTION METHODS FOR INVERSE PROBLEMS, P169