Determination of apparent quantum yield spectra for the formation of biologically labile photoproducts

被引:123
作者
Miller, WL
Moran, MA [1 ]
Sheldon, WM
Zepp, RG
Opsahl, S
机构
[1] Univ Georgia, Dept Marine Sci, Athens, GA 30602 USA
[2] Dalhousie Univ, Dept Oceanog, Halifax, NS B3H 4J1, Canada
[3] US EPA, Natl Exposure Res Lab, Ecosyst Res Div, Athens, GA 30605 USA
关键词
D O I
10.4319/lo.2002.47.2.0343
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum yield spectra for the photochemical formation of biologically labile photoproducts from dissolved organic matter (DOM) have not been available previously, although they Would greatly facilitate attempts to model photoproduct formation rates across latitudinal, seasonal, and depth-related changes in spectral irradiance. Apparent quantum yield spectra were calculated for two coastal environments from the southeastern United States using postirradiation bacterial respiration as a measure of total labile photoproduct formation and a cutoff filter method to model spectral dependence. As has been the case for previously studied classes of DOM photoproducts (i.e., dissolved inorganic carbon, CO, and H2O2), ultraviolet (UV)-B irradiance was significantly more efficient at forming labile photoproducts (i.e., compounds readily assimilated by marine bacterioplankton) than UV-A and visible irradiance. Calculations of DOM photoproduct formation in southeastern U.S. coastal surface waters indicate a formation ratio for biologically labile photoproducts: CO of 13:1. The slope of a natural log plot of the apparent quantum yield spectrum obtained for biologically labile photoproducts was similar to that for CO (0.028 nm (1) vs. 0.034 nm(-1)). Modeled kinetic rates therefore indicate that the production ratio of these photoproduct classes is approximately maintained despite variations in the solar spectrum that occur with depth in a water column or distance from shore. Application of the apparent quantum yield to coastal regions worldwide predicts an annual formation rate of biologically labile photoproducts in coastal waters of 206 x 10(12) g C.
引用
收藏
页码:343 / 352
页数:10
相关论文
共 59 条
[1]   Photochemical oxygen consumption in marine waters: A major sink for colored dissolved organic matter? [J].
Andrews, SS ;
Caron, S ;
Zafiriou, OC .
LIMNOLOGY AND OCEANOGRAPHY, 2000, 45 (02) :267-277
[2]  
[Anonymous], 2000, CHEMOSPHERE GLOBAL C, DOI DOI 10.1016/S1465-9972(00)00006-4
[3]   MIDDLE ULTRAVIOLET-RADIATION REACHING THE OCEAN SURFACE [J].
BAKER, KS ;
SMITH, RC ;
GREEN, AES .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1980, 32 (03) :367-374
[4]  
Balzani V., 1970, PHOTOCHEMISTRY COORD
[5]   Photochemical transformations of surface and deep marine dissolved organic matter: Effects on bacterial growth [J].
Benner, R ;
Biddanda, B .
LIMNOLOGY AND OCEANOGRAPHY, 1998, 43 (06) :1373-1378
[6]   Photochemically produced carboxylic acids as substrates for freshwater bacterioplankton [J].
Bertilsson, S ;
Tranvik, LJ .
LIMNOLOGY AND OCEANOGRAPHY, 1998, 43 (05) :885-895
[7]  
Blough N., 1997, SEA SURFACE GLOBAL C, P383, DOI DOI 10.1017/CBO9780511525025.014
[8]  
Blough N. V., 1995, ACTIVE OXYGEN CHEM, V2, P280, DOI [10.1007/978-94-007-0874-7, DOI 10.1007/978-94-007-0874-7_8, DOI 10.1007/978-94-007-0874-7_]
[9]  
Blough NV, 1995, DAHL WS ENV, V16, P23
[10]   Distribution, flux, and photochemical production of carbon monoxide in a boreal beaver impoundment [J].
Bourbonniere, RA ;
Miller, WL ;
Zepp, RG .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D24) :29321-29329