Non-Gaussian propagator for elephant random walks

被引:35
|
作者
da Silva, M. A. A. [1 ]
Cressoni, J. C. [1 ,2 ]
Schuetz, Gunter M. [3 ]
Viswanathan, G. M. [2 ,4 ]
Trimper, Steffen [5 ]
机构
[1] Univ Sao Paulo, FCFRP, Dept Quim & Fis, BR-14040903 Ribeirao Preto, SP, Brazil
[2] Univ Fed Alagoas, Inst Fis, BR-57072970 Maceio, AL, Brazil
[3] Forschungszentrum Julich, Inst Complex Syst 2, D-52428 Julich, Germany
[4] Univ Fed Rio Grande do Norte, Dept Fis Teor & Expt, BR-59078900 Natal, RN, Brazil
[5] Univ Halle Wittenberg, Inst Phys, D-06099 Halle, Germany
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 02期
基金
巴西圣保罗研究基金会;
关键词
ANOMALOUS DIFFUSION; DYNAMICS; SYSTEMS;
D O I
10.1103/PhysRevE.88.022115
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
For almost a decade the consensus has held that the random walk propagator for the elephant random walk (ERW) model is a Gaussian. Here we present strong numerical evidence that the propagator is, in general, non-Gaussian and, in fact, non-Levy. Motivated by this surprising finding, we seek a second, non-Gaussian solution to the associated Fokker-Planck equation. We prove mathematically, by calculating the skewness, that the ERW Fokker-Planck equation has a non-Gaussian propagator for the superdiffusive regime. Finally, we discuss some unusual aspects of the propagator in the context of higher order terms needed in the Fokker-Planck equation.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] NON-GAUSSIAN RANDOM-WALKS
    BALL, RC
    HAVLIN, S
    WEISS, GH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (12): : 4055 - 4059
  • [2] Analytical representations of non-Gaussian laws of random walks
    P. V. Vidov
    M. Yu. Romanovsky
    Physics of Wave Phenomena, 2009, 17 : 218 - 227
  • [3] NON-GAUSSIAN FLUCTUATIONS OF RANDOMLY TRAPPED RANDOM WALKS
    Bowditch, Adam
    ADVANCES IN APPLIED PROBABILITY, 2021, 53 (03) : 801 - 838
  • [4] Analytical representations of non-Gaussian laws of random walks
    Vidov, P. V.
    Romanovsky, M. Yu.
    PHYSICS OF WAVE PHENOMENA, 2009, 17 (03) : 218 - 227
  • [5] From diffusion in compartmentalized media to non-Gaussian random walks
    Slezak, Jakub
    Burov, Stanislav
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [6] From diffusion in compartmentalized media to non-Gaussian random walks
    Jakub Ślęzak
    Stanislav Burov
    Scientific Reports, 11
  • [7] Gaussian Fluctuation for Superdiffusive Elephant Random Walks
    Naoki Kubota
    Masato Takei
    Journal of Statistical Physics, 2019, 177 : 1157 - 1171
  • [8] Gaussian Fluctuation for Superdiffusive Elephant Random Walks
    Kubota, Naoki
    Takei, Masato
    JOURNAL OF STATISTICAL PHYSICS, 2019, 177 (06) : 1157 - 1171
  • [9] Random walks with non-Gaussian step-size distributions and the folding of random polymer chains
    Shaw, RHAD
    Tuszynski, JA
    PHYSICAL REVIEW E, 2003, 67 (03):
  • [10] Simulation of non-Gaussian random vibration
    Xu, Fei
    Li, Chuanri
    Jiang, Tongmin
    Rong, Shuanglong
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2014, 40 (09): : 1239 - 1244