Orthogonal design of experiments for parameter learning in image segmentation

被引:32
作者
Franek, Lucas [1 ]
Jiang, Xiaoyi [1 ]
机构
[1] Univ Munster, Dept Math & Comp Sci, D-48149 Munster, Germany
关键词
Parameter learning; Orthogonal arrays; Design of experiments; Image segmentation; PERFORMANCE EVALUATION; GENETIC ALGORITHM; OPTIMIZATION;
D O I
10.1016/j.sigpro.2012.08.016
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper employs the methods from the design of experiments for supervised parameter learning in image segmentation. We propose to use orthogonal arrays in order to keep the number of experiments small and several algorithms are formulated. Analysis of means is applied to estimate the optimal parameter settings. In addition, a combination of orthogonal arrays and genetic algorithm is used to further improve the performance. The proposed algorithms are experimentally validated based on two segmentation algorithms and the Berkeley image database. A comparison with exhaustive search, an alternating scheme and a Monte-Carlo approach is also provided. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1694 / 1704
页数:11
相关论文
共 28 条
  • [1] Fine-tuning of algorithms using fractional experimental designs and local search
    Adenso-Díaz, B
    Laguna, M
    [J]. OPERATIONS RESEARCH, 2006, 54 (01) : 99 - 114
  • [2] PERFORMANCE EVALUATION OF DISTANCE METRICS: APPLICATION TO FINGERPRINT RECOGNITION
    Bharkad, Sangita D.
    Kokare, Manesh
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2011, 25 (06) : 777 - 806
  • [3] Fast global minimization of the active Contour/Snake model
    Bresson, Xavier
    Esedoglu, Selim
    Vandergheynst, Pierre
    Thiran, Jean-Philippe
    Osher, Stanley
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2007, 28 (02) : 151 - 167
  • [4] MEASURING THE PERFORMANCE OF ORDINAL CLASSIFICATION
    Cardoso, Jaime S.
    Sousa, Ricardo
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2011, 25 (08) : 1173 - 1195
  • [5] A self-learning segmentation framework - the Taguchi approach
    Chen, DH
    Sun, YN
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2000, 24 (05) : 283 - 296
  • [6] Christoudias CM, 2002, INT C PATT RECOG, P150, DOI 10.1109/ICPR.2002.1047421
  • [7] Benchmarking Image Segmentation Algorithms
    Estrada, Francisco J.
    Jepson, Allan D.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2009, 85 (02) : 167 - 181
  • [8] Efficient graph-based image segmentation
    Felzenszwalb, PF
    Huttenlocher, DP
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 59 (02) : 167 - 181
  • [9] Franek L, 2011, LECT NOTES COMPUT SC, V6854, P118, DOI 10.1007/978-3-642-23672-3_15
  • [10] Jiang X., 2002, EMPIRICAL EVALUATION, P23