On the minimal eccentric connectivity indices of bipartite graphs with some given parameters

被引:13
作者
Zhang, Minjie [1 ]
Li, Shuchao [2 ]
Xu, Baogen [3 ]
Wang, Guangfu [3 ]
机构
[1] Hubei Univ Arts & Sci, Sch Math & Stat, Xiangyang 441053, Peoples R China
[2] Cent China Normal Univ, Fac Math & Stat, Wuhan 430079, Hubei, Peoples R China
[3] East China Jiaotong Univ, Sch Sci, Nanchang 330013, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Eccentric connectivity index; Eccentricity; Diameter; Distance; WIENERS INDEX; PREDICTION; MODELS;
D O I
10.1016/j.dam.2018.11.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a connected graph. The eccentric connectivity index xi(c)(G) of G is defined as xi(c)(G) = Sigma(v is an element of VG) d(G)(v)is an element of(G)(v), where the eccentricity epsilon(G)(v) = max(u)(is an element of VG) d(G)(v, u). Zhang et al. (2012) studied the minimal eccentric connectivity indices of graphs. As a continuance of it, in this paper we consider these problems on bipartite graphs. We obtain lower bounds on xi(c)(G) in terms of the number of edges among n-vertex connected bipartite graphs with given diameter. Among all connected bipartite graphs on n vertices with m edges and diameter at least s, and connected bipartite graphs on n vertices with diameter at least s, we establish the lower bounds on xi(c)(G), respectively. All the corresponding extremal graphs are identified. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:242 / 253
页数:12
相关论文
共 30 条
[1]  
Ashrafi A., 2011, Serdica Journal of Computing, V5, P101
[2]  
Ashrafi AR, 2011, MATCH-COMMUN MATH CO, V65, P221
[3]   The eccentric connectivity index of nanotubes and nanotori [J].
Ashrafi, A. R. ;
Saheli, M. ;
Ghorbani, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (16) :4561-4566
[4]   USE OF GRAPH-THEORETIC PARAMETERS IN RISK ASSESSMENT OF CHEMICALS [J].
BASAK, SC ;
BERTELSEN, S ;
GRUNWALD, GD .
TOXICOLOGY LETTERS, 1995, 79 (1-3) :239-250
[5]  
Bondy J.A., 2008, GTM, V244
[6]   ON THE ECCENTRIC CONNECTIVITY INDEX AND WIENER INDEX OF A GRAPH [J].
Dankelmann, P. ;
Morgan, M. J. ;
Mukwembi, S. ;
Swart, H. C. .
QUAESTIONES MATHEMATICAE, 2014, 37 (01) :39-47
[7]   Comparison between the Szeged index and the eccentric connectivity index [J].
Das, Kinkar Ch. ;
Nadjafi-Arani, M. J. .
DISCRETE APPLIED MATHEMATICS, 2015, 186 :74-86
[8]   Comparison between the Wiener index and the Zagreb indices and the eccentric connectivity index for trees [J].
Das, Kinkar Ch ;
Jeon, Han-ul ;
Trinajstie, Nenad .
DISCRETE APPLIED MATHEMATICS, 2014, 171 :35-41
[9]   Relationship between the eccentric connectivity index and Zagreb indices [J].
Das, Kinkar Ch ;
Trinajstic, N. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (04) :1758-1764
[10]  
Doslic T, 2014, UTILITAS MATHEMATICA, V95, P3