The Gomory-Chvatal Closure of a Nonrational Polytope Is a Rational Polytope

被引:8
作者
Dunkel, Juliane [1 ]
Schulz, Andreas S. [1 ]
机构
[1] MIT, Ctr Operat Res, Cambridge, MA 02139 USA
关键词
Gomory-Chvatal closure; cutting planes; integer programming;
D O I
10.1287/moor.1120.0565
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The question as to whether the Gomory-Chvatal closure of a nonrational polytope is a polytope has been a longstanding open problem in integer programming. In this paper, we answer this question in the affirmative by combining ideas from polyhedral theory and the geometry of numbers.
引用
收藏
页码:63 / 91
页数:29
相关论文
共 11 条
[1]  
Barvinok A, 2002, Graduate Studies in Mathematics, V54
[2]  
Chvatal V., 1973, Discrete Mathematics, V4, P305, DOI 10.1016/0012-365X(73)90167-2
[3]   Valid inequalities for mixed integer linear programs [J].
Cornuejols, Gerard .
MATHEMATICAL PROGRAMMING, 2008, 112 (01) :3-44
[4]  
Dadush D, 2011, LECT NOTES COMPUT SC, V6655, P130, DOI 10.1007/978-3-642-20807-2_11
[5]   The Chvatal-Gomory Closure of a Strictly Convex Body [J].
Dadush, Daniel ;
Dey, Santanu S. ;
Vielma, Juan Pablo .
MATHEMATICS OF OPERATIONS RESEARCH, 2011, 36 (02) :227-239
[6]  
Dey SS, 2010, LECT NOTES COMPUT SC, V6080, P327, DOI 10.1007/978-3-642-13036-6_25
[7]  
Gomory R., 1958, B AM MATH SOC, V64, P275, DOI [10.1090/S0002-9904-1958-10224-4, DOI 10.1090/S0002-9904-1958-10224-4]
[8]   ARBITRARILY COMPLEX CORNER POLYHEDRA ARE DENSE IN RN [J].
HALFIN, S .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1972, 23 (02) :157-&
[9]   FACTORING POLYNOMIALS WITH RATIONAL COEFFICIENTS [J].
LENSTRA, AK ;
LENSTRA, HW ;
LOVASZ, L .
MATHEMATISCHE ANNALEN, 1982, 261 (04) :515-534
[10]  
Schrijver A., 1980, Annals of Discrete Mathematics, V9, P291