Circular Tuscan-k arrays from permutation binomials

被引:8
作者
Chu, WS [1 ]
Golomb, SW
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Univ So Calif, Inst Commun Sci, Los Angeles, CA 90089 USA
关键词
D O I
10.1006/jcta.2001.3221
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first discuss some properties of permutation polynomials over finite fields. In particular, a class of permutation binomials are introduced and a series of set complete mappings is constructed. Based on that, we present a new construction for Tuscan-l arrays with various sizes. (C) 2002 Elsevier Science.
引用
收藏
页码:195 / 202
页数:8
相关论文
共 14 条
[1]  
[Anonymous], 1983, ENCY MATH APPL
[2]  
CHOU WS, 1993, FINITE FIELDS CODING, P33
[3]   TUSCAN-K SQUARES [J].
ETZION, T ;
GOLOMB, SW ;
TAYLOR, H .
ADVANCES IN APPLIED MATHEMATICS, 1989, 10 (02) :164-174
[4]  
GOLOMB SW, 1985, ARS COMBINATORIA, V20B, P115
[5]  
GOLOMB SW, 1990, ARS COMBINATORIA, V30, P97
[6]   On periodicity properties of Costas arrays and a conjecture on permutation polynomials [J].
Golomb, SW ;
Moreno, O .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (06) :2252-2253
[7]   ALGEBRAIC CONSTRUCTIONS FOR COSTAS ARRAYS [J].
GOLOMB, SW .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1984, 37 (01) :13-21
[8]  
Mollin R.A., 1987, INT J MATH MATH SCI, V10, P535
[9]  
Small C., 1990, INT J MATH MATH SCI, V13, P337
[10]  
Song H., 1994, FINITE FIELDS THEORY, P341