Non-classicality from the phase-space flow analysis of the Weyl-Wigner quantum mechanics

被引:14
|
作者
Bernardini, Alex E. [1 ]
Bertolami, Orfeu [1 ,2 ]
机构
[1] Univ Porto, Fac Ciencias, Dept Fis & Astron, Rua Campo Alegre, P-4169007 Oporto, Portugal
[2] Ctr Fis Porto, Rua Campo Alegre, P-4169007 Oporto, Portugal
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1209/0295-5075/120/20002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A fluid analog of the information flux in the phase-space associated to purity and von Neumann entropy is identified in the Weyl-Wigner formalism of quantum mechanics. Once constrained by symmetry and positiveness, the encountered continuity equations provide novel quantifiers for non-classicality (non-Liouvillian fluidity) given in terms of quantum decoherence, purity and von Neumann entropy fluxes. Through definitions in the Weyl-Wigner formalism, one can identify the quantum fluctuations that distort the classical-quantum coincidence regime, and the corresponding quantum information profile, whenever some bounded x-p volume of the phase-space is specified. The dynamics of anharmonic systems is investigated in order to illustrate such a novel paradigm for describing quantumness and classicality through the flux of quantum information in the phase-space. Copyright (C) EPLA, 2017
引用
收藏
页数:6
相关论文
共 50 条
  • [21] QUANTUM CONDITION IN THE PHASE-SPACE REPRESENTATION OF QUANTUM MECHANICS
    TAKABAYASI, T
    PROGRESS OF THEORETICAL PHYSICS, 1953, 10 (01): : 119 - 120
  • [22] Certification of non-classicality in all links of a photonic star network without assuming quantum mechanics
    Wang, Ning-Ning
    Pozas-Kerstjens, Alejandro
    Zhang, Chao
    Liu, Bi-Heng
    Huang, Yun-Feng
    Li, Chuan-Feng
    Guo, Guang-Can
    Gisin, Nicolas
    Tavakoli, Armin
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [23] PHASE-SPACE DYNAMICS AND QUANTUM-MECHANICS
    DAHL, JP
    THEORETICA CHIMICA ACTA, 1992, 81 (4-5): : 329 - 337
  • [24] Tsallis entropy in phase-space quantum mechanics
    Sadeghi, Parvin
    Khademi, Siamak
    Darooneh, Amir H.
    PHYSICAL REVIEW A, 2012, 86 (01):
  • [25] An extended phase-space SUSY quantum mechanics
    Ter-Kazarian, G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (05)
  • [26] PHASE-SPACE DESCRIPTION OF QUANTUM-MECHANICS
    RUGGERI, GJ
    PROGRESS OF THEORETICAL PHYSICS, 1971, 46 (06): : 1703 - +
  • [27] ADVANTAGES OF QUANTUM-MECHANICS ON PHASE-SPACE
    SCHROECK, FE
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1994, 33 (01) : 157 - 170
  • [28] QUANTUM PHASE-SPACE FORMULATION OF SCHRODINGER MECHANICS
    CIRELLI, R
    MANIA, A
    PIZZOCCHERO, L
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (12): : 2133 - 2146
  • [29] Aspects of phase-space noncommutative quantum mechanics
    Bertolami, O.
    Leal, P.
    PHYSICS LETTERS B, 2015, 750 : 6 - 11
  • [30] Quantum mechanics as a geometric phase: phase-space interferometers
    Luis, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (37): : 7677 - 7684