The Transcriptional Landscape o Microglial Genes in Aging and Neurodegenerative Disease

被引:54
作者
Bonham, Luke W. [1 ]
Sirkis, Daniel W. [1 ]
Yokoyama, Jennifer S. [1 ]
机构
[1] Univ Calif San Francisco, Memory & Aging Ctr, Dept Neurol, San Francisco, CA 94143 USA
关键词
microglia; Alzheimer's disease; genetics; TMEM119; cell-type profiling; frontotemporal dementia; autoimmune disease; RNAseq; A-BETA-DEPOSITION; ALZHEIMERS-DISEASE; TISSUE DISTRIBUTION; EXPRESSION CLONING; TRANSGENIC MICE; MOUSE; ACTIVATION; RECEPTOR; PROTEIN; TREM2;
D O I
10.3389/fimmu.2019.01170
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Microglia, the brain-resident myeloid cells, are strongly implicated in Alzheimer's disease (AD) pathogenesis by human genetics. However, the mechanisms by which microglial gene expression is regulated in a region-specific manner over the course of normal aging and in neurodegenerative disease are only beginning to be deciphered. Herein, we used a specific marker of microglia (TMEM119) and a cell-type expression profiling tool (CellMapper) to identify a human microglial gene expression module. Surprisingly, we found that microglial module genes are robustly expressed in several healthy human brain regions known to be vulnerable in AD, in addition to other regions affected only later in disease or spared in AD. Surveying the microglial gene set for differential expression over the lifespan in mouse models of AD and a related tauopathy revealed that the majority of microglial module genes were significantly upregulated in cortex and hippocampus as a function of age and transgene status. Extending these results, we also observed significant upregulation of microglial module genes in several AD-affected brain regions in addition to other regions using postmortem brain tissue from human AD samples. In pathologically confirmed AD cases, we found preliminary evidence that microglial genes may be dysregulated in a sex-specific manner. Finally, we identified specific and significant overlap between the described microglial gene set-identified by unbiased co-expression analysis-and genes known to impart risk for AD. Our findings suggest that microglial genes show enriched expression in AD-vulnerable brain regions, are upregulated during aging and neurodegeneration in mice, and are upregulated in pathologically affected brain regions in AD. Taken together, our data-driven findings from multiple publicly accessible datasets reemphasize the importance of microglial gene expression alterations in AD and, more importantly, suggest that regional and sex-specific variation in microglial gene expression may be implicated in risk for and progression of neurodegenerative disease.
引用
收藏
页数:17
相关论文
共 113 条
[21]   Microglial Physiology and Pathophysiology: Insights from Genome-wide Transcriptional Profiling [J].
Crotti, Andrea ;
Ransohoff, Richard M. .
IMMUNITY, 2016, 44 (03) :505-515
[22]   Disease-Associated Microglia: A Universal Immune Sensor of Neurodegeneration [J].
Deczkowska, Aleksandra ;
Keren-Shaul, Hadas ;
Weiner, Assaf ;
Colonna, Marco ;
Schwartz, Michal ;
Amit, Ido .
CELL, 2018, 173 (05) :1073-1081
[23]   Changes in the Synaptic Proteome in Tauopathy and Rescue of Tau-Induced Synapse Loss by C1q Antibodies [J].
Dejanovic, Borislav ;
Huntley, Melanie A. ;
De Maziere, Ann ;
Meilandt, William J. ;
Wu, Tiffany ;
Srinivasan, Karpagam ;
Jiang, Zhiyu ;
Gandham, Vineela ;
Friedman, Brad A. ;
Hai Ngu ;
Foreman, Oded ;
Carano, Richard A. D. ;
Chih, Ben ;
Klumperman, Judith ;
Bakalarski, Corey ;
Hanson, Jesse E. ;
Sheng, Morgan .
NEURON, 2018, 100 (06) :1322-+
[24]   Immunopathology of multiple sclerosis [J].
Dendrou, Calliope A. ;
Fugger, Lars ;
Friese, Manuel A. .
NATURE REVIEWS IMMUNOLOGY, 2015, 15 (09) :545-558
[25]   Alzheimer's disease: experimental models and reality [J].
Drummond, Eleanor ;
Wisniewski, Thomas .
ACTA NEUROPATHOLOGICA, 2017, 133 (02) :155-175
[26]   Diverse Brain Myeloid Expression Profiles Reveal Distinct Microglial Activation States and Aspects of Alzheimer's Disease Not Evident in Mouse Models [J].
Friedman, Brad A. ;
Srinivasan, Karpagam ;
Ayalon, Gai ;
Meilandt, William J. ;
Lin, Han ;
Huntley, Melanie A. ;
Cao, Yi ;
Lee, Seung-Hye ;
Haddick, Patrick C. G. ;
Ngu, Hai ;
Modrusan, Zora ;
Larson, Jessica L. ;
Kaminker, Joshua S. ;
van der Brug, Marcel P. ;
Hansen, David V. .
CELL REPORTS, 2018, 22 (03) :832-847
[27]   Transcriptomic analysis of purified human cortical microglia reveals age-associated changes [J].
Galatro, Thais F. ;
Holtman, Inge R. ;
Lerario, Antonio M. ;
Vainchtein, Ilia D. ;
Brouwer, Nieske ;
Sola, Paula R. ;
Veras, Mariana M. ;
Pereira, Tulio F. ;
Leite, Renata E. P. ;
Moller, Thomas ;
Wes, Paul D. ;
Sogayar, Mari C. ;
Laman, Jon D. ;
den Dunnen, Wilfred ;
Pasqualucci, Carlos A. ;
Oba-Shinjo, Sueli M. ;
Boddeke, Erik W. G. M. ;
Marie, Suely K. N. ;
Eggen, Bart J. L. .
NATURE NEUROSCIENCE, 2017, 20 (08) :1162-+
[28]   Toll-Like Receptors in Alzheimer's Disease: A Therapeutic Perspective [J].
Gambuzza, Maria E. ;
Sofo, Vincenza ;
Salmeri, Francesca M. ;
Soraci, Luca ;
Marino, Silvia ;
Bramanti, Placido .
CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS, 2014, 13 (09) :1542-1558
[29]   Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium [J].
Gaudet, Pascale ;
Livstone, Michael S. ;
Lewis, Suzanna E. ;
Thomas, Paul D. .
BRIEFINGS IN BIOINFORMATICS, 2011, 12 (05) :449-462
[30]   EXPRESSION CLONING OF A RECEPTOR FOR HUMAN GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR [J].
GEARING, DP ;
KING, JA ;
GOUGH, NM ;
NICOLA, NA .
EMBO JOURNAL, 1989, 8 (12) :3667-3676