Prediction of biaxial buckling behavior of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations

被引:125
作者
Ansari, R. [1 ]
Sahmani, S. [1 ]
机构
[1] Univ Guilan, Dept Mech Engn, Rasht, Iran
关键词
Biaxial buckling; Single-layered graphene sheets; Nonlocal elasticity continuum; Molecular dynamics simulation; Various plate theories; WALLED CARBON NANOTUBES; FREE-VIBRATION; SHELL-MODEL; ELASTICITY;
D O I
10.1016/j.apm.2013.03.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The biaxial buckling behavior of single-layered graphene sheets (SLGSs) is studied in the present work. To consider the size-effects in the analysis, Eringen's nonlocal elasticity equations are incorporated into the different types of plate theory namely as classical plate theory (CLPT), first-order shear deformation theory (FSDT), and higher-order shear deformation theory (HSDT). An exact solution is conducted to obtain the critical biaxial buckling loads of simply-supported square and rectangular SLGSs with Various values of side-length and nonlocal parameter corresponding to each type of nonlocal plate model. Then, molecular dynamics (MD) simulations are performed for a series of armchair and zigzag SLGSs with different side-lengths, the results of which are matched with those obtained by the nonlocal plate models to extract the appropriate values of nonlocal parameter relevant to each type of nonlocal elastic plate model and chirality. It is found that the present nonlocal plate models With their proposed proper values of nonlocal parameter have an excellent capability to predict the biaxial buckling response of SLGSs. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:7338 / 7351
页数:14
相关论文
共 42 条
[1]   A comparison of different methods of Young's modulus determination for single-wall carbon nanotubes (SWCNT) using molecular dynamics (MD) simulations [J].
Agrawal, Paras M. ;
Sudalayandi, Bala S. ;
Raff, Lionel M. ;
Komanduri, Ranga .
COMPUTATIONAL MATERIALS SCIENCE, 2006, 38 (02) :271-281
[2]  
[Anonymous], 2005, NANOHIVE 1 V 1 2 0 B
[3]   Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models [J].
Ansari, R. ;
Sahmani, S. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (04) :1965-1979
[4]   Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics [J].
Ansari, R. ;
Rouhi, H. ;
Sahmani, S. .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2011, 53 (09) :786-792
[5]   Axial buckling analysis of single-walled carbon nanotubes in thermal environments via the Rayleigh-Ritz technique [J].
Ansari, R. ;
Sahmani, S. ;
Rouhi, H. .
COMPUTATIONAL MATERIALS SCIENCE, 2011, 50 (10) :3050-3055
[6]   Rayleigh-Ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions [J].
Ansari, R. ;
Sahmani, S. ;
Rouhi, H. .
PHYSICS LETTERS A, 2011, 375 (09) :1255-1263
[7]   Nonlocal plate model for free vibrations of single-layered graphene sheets [J].
Ansari, R. ;
Sahmani, S. ;
Arash, B. .
PHYSICS LETTERS A, 2010, 375 (01) :53-62
[8]   Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets [J].
Ansari, R. ;
Rajabiehfard, R. ;
Arash, B. .
COMPUTATIONAL MATERIALS SCIENCE, 2010, 49 (04) :831-838
[9]   Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain [J].
Arash, B. ;
Ansari, R. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (08) :2058-2064
[10]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690