Central extensions of cotangent universal hierarchy: (2+1)-dimensional bi-Hamiltonian systems

被引:18
作者
Sergyeyev, Artur [1 ]
Szablikowski, Blazej M. [2 ,3 ]
机构
[1] Silesian Univ Opava, Math Inst, Opava 74601, Czech Republic
[2] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
[3] Adam Mickiewicz Univ Poznan, Dept Phys, PL-61614 Poznan, Poland
关键词
Cotangent universal hierarchy; Central extension; Integrable systems; (2+1)-dimensional bi-Hamiltonian systems; R-matrix;
D O I
10.1016/j.physleta.2008.10.020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce the cotangent universal hierarchy that extends the universal hierarchy from [L. Martinez Alonso, A.B. Shabat, Phys. Lett. A 300 (1) (2002) 58, nlin.SI/0202008; A.B. Shabat, Theor. Math. Phys. 136 (2003) 1066; L. Martinez Alonso, A.B. Shabat, J. Nonlinear Math. Phys. 10 (2) (2003) 229, nlin.SI/0310036; L. Martinez Alonso, A.B. Shabat, Theor. Math. Phys. 140 (2) (2004) 1073, nlin.SI/0312043; A. Shabat, J. Nonlinear Math. Phys. 12 (Suppl. 1) (2005) 614). Then we construct a (2 + 1)-dimensional double central extension of the cotangent universal hierarchy and show that this extension is bi-Hamiltonian. This yields, as a byproduct, the central extension of the original universal hierarchy. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:7016 / 7023
页数:8
相关论文
共 28 条
[1]   Hydrodynamic reductions and solutions of a universal hierarchy [J].
Alonso L.M. ;
Shabat A.B. .
Theoretical and Mathematical Physics, 2004, 140 (2) :1073-1085
[2]   Towards a theory of differential constraints of a hydrodynamic hierarchy [J].
Alonso, LM ;
Shabat, AB .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2003, 10 (02) :229-242
[3]   Energy-dependent potentials revisited: A universal hierarchy of hydrodynamic type [J].
Martínez Alonso, L. ;
Shabat, A.B. .
Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 300 (01) :58-64
[4]  
Blaszak M, 2002, J PHYS A-MATH GEN, V35, P10345, DOI 10.1088/0305-4470/35/48/309
[5]   Lie algebraic approach to the construction of (2+1)-dimensional lattice-field and field integrable Hamiltonian equations [J].
Blaszak, M ;
Szum, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (01) :225-259
[6]   HAMILTONIAN THEORY OVER NONCOMMUTATIVE RINGS AND INTEGRABILITY IN MULTIDIMENSIONS [J].
DORFMAN, IY ;
FOKAS, AS .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (07) :2504-2514
[7]   A class of Einstein-Weyl spaces associated to an integrable system of hydrodynamic type [J].
Dunajski, M .
JOURNAL OF GEOMETRY AND PHYSICS, 2004, 51 (01) :126-137
[8]   Multidimensional integrable systems and deformations of Lie algebra homomorphisms [J].
Dunajski, Maciej ;
Grant, James D. E. ;
Strachan, Ian A. B. .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (09)
[9]   An interpolating dispersionless integrable system [J].
Dunajski, Maciej .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (31)
[10]   On the integrability of (2+1)-dimensional quasilinear systems [J].
Ferapontov, EV ;
Khusnutdinova, KR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 248 (01) :187-206