An introduction to the Markov chain Monte Carlo method

被引:1
|
作者
Wang, Wenlong [1 ]
机构
[1] Sichuan Univ, Coll Phys, Chengdu 610065, Peoples R China
基金
美国国家科学基金会;
关键词
SIMULATION; TRANSPORT; EQUATION; STATE;
D O I
10.1119/5.0122488
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
We present an intuitive, conceptual, and semi-rigorous introduction to the Markov Chain Monte Carlo method using a simple model of population dynamics and focusing on a few elementary distributions. We start from two states, then three states, and finally generalize to many states with both discrete and continuous distributions. Despite the mathematical simplicity, our examples include the essential concepts of the Markov Chain Monte Carlo method, including ergodicity, global balance and detailed balance, proposal or selection probability, acceptance probability, the underlying stochastic matrix, and error analysis. Our experience suggests that most senior undergraduate students in physics can follow these materials without much difficulty. (C) 2022Published under an exclusive license by American Association of Physics Teachers.
引用
收藏
页码:921 / 934
页数:14
相关论文
共 50 条
  • [31] On nonlinear Markov chain Monte Carlo
    Andrieu, Christophe
    Jasra, Ajay
    Doucet, Arnaud
    Del Moral, Pierre
    BERNOULLI, 2011, 17 (03) : 987 - 1014
  • [32] Structured Markov Chain Monte Carlo
    Sargent, DJ
    Hodges, JS
    Carlin, BP
    DIMENSION REDUCTION, COMPUTATIONAL COMPLEXITY AND INFORMATION, 1998, 30 : 191 - 191
  • [33] Structured Markov chain Monte Carlo
    Sargent, DJ
    Hodges, JS
    Carlin, BP
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2000, 9 (02) : 217 - 234
  • [34] Coreset Markov chain Monte Carlo
    Chen, Naitong
    Campbell, Trevor
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [35] Multilevel Markov Chain Monte Carlo
    Dodwell, T. J.
    Ketelsen, C.
    Scheichl, R.
    Teckentrup, A. L.
    SIAM REVIEW, 2019, 61 (03) : 509 - 545
  • [36] THE MARKOV CHAIN MONTE CARLO REVOLUTION
    Diaconis, Persi
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 46 (02) : 179 - 205
  • [37] MARKOV CHAIN MONTE CARLO AND IRREVERSIBILITY
    Ottobre, Michela
    REPORTS ON MATHEMATICAL PHYSICS, 2016, 77 (03) : 267 - 292
  • [38] STEREOGRAPHIC MARKOV CHAIN MONTE CARLO
    Yang, Jun
    Latuszynski, Krzysztof
    Roberts, Gareth o.
    ANNALS OF STATISTICS, 2024, 52 (06): : 2692 - 2713
  • [40] Introduction to particle Markov-chain Monte Carlo for disease dynamics modellers
    Endo, Akira
    van Leeuwen, Edwin
    Baguelin, Marc
    EPIDEMICS, 2019, 29