Generalized and phase synchronization between two different time-delayed systems

被引:2
作者
Ghosh, Dibakar [1 ,2 ]
Ray, Anirban [1 ]
Chowdhury, A. Roy [1 ]
机构
[1] Jadavpur Univ, Dept Phys, Div High Energy Phys, Kolkata 700032, India
[2] Dinabandhu Andrews Coll, Dept Math, Kolkata 700084, W Bengal, India
来源
MODERN PHYSICS LETTERS B | 2008年 / 22卷 / 19期
关键词
variable time delay; wavelet transform; Krasovskii-Lyapunov theory; Lyapunov exponents; generalized synchronization; phase synchronization; auxiliary system method;
D O I
10.1142/S0217984908016546
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we investigate the relation between generalized and phase synchronization for time-delayed systems. Two different systems are considered, namely, Logistic and Mackey-Glass systems. Sufficient conditions for determining the generalized synchronization are derived analytically for scalar and modulated time-delay and tested for correctness by numerical simulations. We propose an example that phase synchronization is stronger than generalized synchronization for scalar time-delay and the opposite situation happens for modulated delay time.
引用
收藏
页码:1867 / 1878
页数:12
相关论文
共 32 条
[1]  
Arecchi FT, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.046237
[2]   Synchronization between two different time-delayed systems and image encryption [J].
Banerjee, S. ;
Ghosh, D. ;
Ray, A. ;
Chowdhury, A. Roy .
EPL, 2008, 81 (02)
[3]   Reconstruction of systems with delayed feedback:: II.: Application [J].
Bünner, MJ ;
Ciofini, M ;
Giaquinta, A ;
Hegger, R ;
Kantz, H ;
Meucci, R ;
Politi, A .
EUROPEAN PHYSICAL JOURNAL D, 2000, 10 (02) :177-187
[4]   Reconstruction of systems with delayed feedback:: I.: Theory [J].
Bünner, MJ ;
Ciofini, M ;
Giaquinta, A ;
Hegger, R ;
Kantz, H ;
Meucci, R ;
Politi, A .
EUROPEAN PHYSICAL JOURNAL D, 2000, 10 (02) :165-176
[5]   On the intrinsic time scales involved in synchronization: A data-driven approach [J].
Chavez, M ;
Adam, C ;
Navarro, V ;
Boccaletti, S ;
Martinerie, J .
CHAOS, 2005, 15 (02)
[6]   CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :65-68
[7]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[8]   Synchronization between variable time-delayed systems and cryptography [J].
Ghosh, D. ;
Banerjee, S. ;
Chowdhury, A. R. .
EPL, 2007, 80 (03)
[9]  
GHOSH D, 2007, INT J NONLINEAR SCI, V4, P52
[10]   Phase synchronization between two essentially different chaotic systems [J].
Guan, SG ;
Lai, CH ;
Wei, GW .
PHYSICAL REVIEW E, 2005, 72 (01)