Kinetic characterization of the critical step in HIV-1 protease maturation

被引:87
作者
Kashif Sadiq, S. [1 ]
Noe, Frank [2 ]
De Fabritiis, Gianni [1 ]
机构
[1] Univ Pompeu Fabra, GRIB IMIM, Computat Biophys Lab, Barcelona 08003, Spain
[2] Free Univ Berlin, Res Ctr Matheon, D-14195 Berlin, Germany
关键词
conformational kinetics; Markov state model; high-throughput molecular dynamics; MOLECULAR-DYNAMICS SIMULATIONS; VIRUS TYPE-1 PROTEASE; CRYSTAL-STRUCTURES; SUBSTRATE-BINDING; MECHANISM; FLAPS; INHIBITOR; STABILITY; PRECURSOR; RECOGNITION;
D O I
10.1073/pnas.1210983109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
HIV maturation requires multiple cleavage of long polyprotein chains into functional proteins that include the viral protease itself. Initial cleavage by the protease dimer occurs from within these precursors, and yet only a single protease monomer is embedded in each polyprotein chain. Self-activation has been proposed to start from a partially dimerized protease formed from monomers of different chains binding its own N termini by self-association to the active site, but a complete structural understanding of this critical step in HIV maturation is missing. Here, we captured the critical self-association of immature HIV-1 protease to its extended amino-terminal recognition motif using large-scale molecular dynamics simulations, thus confirming the postulated intramolecular mechanism in atomic detail. We show that self-association to a catalytically viable state requires structural cooperativity of the flexible beta-hairpin "flap" regions of the enzyme and that the major transition pathway is first via self-association in the semiopen/open enzyme states, followed by enzyme conformational transition into a catalytically viable closed state. Furthermore, partial N-terminal threading can play a role in self-association, whereas wide opening of the flaps in concert with self-association is not observed. We estimate the association rate constant (k(on)) to be on the order of similar to 1 x 10(4) s(-1), suggesting that N-terminal self-association is not the rate-limiting step in the process. The shown mechanism also provides an interesting example of molecular conformational transitions along the association pathway.
引用
收藏
页码:20449 / 20454
页数:6
相关论文
共 44 条
[1]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[2]   The role of dynamic conformational ensembles in biomolecular recognition [J].
Boehr, David D. ;
Nussinov, Ruth ;
Wright, Peter E. .
NATURE CHEMICAL BIOLOGY, 2009, 5 (11) :789-796
[3]   Taming the complexity of protein folding [J].
Bowman, Gregory R. ;
Voelz, Vincent A. ;
Pande, Vijay S. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2011, 21 (01) :4-11
[4]   High-Throughput All-Atom Molecular Dynamics Simulations Using Distributed Computing [J].
Buch, I. ;
Harvey, M. J. ;
Giorgino, T. ;
Anderson, D. P. ;
De Fabritiis, G. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2010, 50 (03) :397-403
[5]   Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations [J].
Buch, Ignasi ;
Giorgino, Toni ;
De Fabritiis, Gianni .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (25) :10184-10189
[6]   Coarse master equations for peptide folding dynamics [J].
Buchete, Nicolae-Viorel ;
Hummer, Gerhard .
JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (19) :6057-6069
[7]   Gated binding of ligands to HIV-1 protease: Brownian dynamics simulations in a coarse-grained model [J].
Chang, Chia-En ;
Shen, Tongye ;
Trylska, Joanna ;
Tozzini, Valentina ;
McCammon, J. Andrew .
BIOPHYSICAL JOURNAL, 2006, 90 (11) :3880-3885
[8]   Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics [J].
Chodera, John D. ;
Singhal, Nina ;
Pande, Vijay S. ;
Dill, Ken A. ;
Swope, William C. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (15)
[9]   DISSOCIATION AND ASSOCIATION OF THE HIV-1 PROTEASE DIMER SUBUNITS - EQUILIBRIA AND RATES [J].
DARKE, PL ;
JORDAN, SP ;
HALL, DL ;
ZUGAY, JA ;
SHAFER, JA ;
KUO, LC .
BIOCHEMISTRY, 1994, 33 (01) :98-105
[10]  
DARKE PL, 1994, METHOD ENZYMOL, V241, P104