From random partitions to fractional Brownian sheets

被引:2
作者
Durieu, Olivier [1 ]
Wang, Yizao [2 ]
机构
[1] Univ Tours, Lab Math & Phys Theor, UMR CNRS 7350, FR CNRS 2964,Federat Denis Poisson, Parc Grandmont, F-37200 Tours, France
[2] Univ Cincinnati, Dept Math Sci, 2815 Commons Way, Cincinnati, OH 45221 USA
关键词
fractional Brownian motion; fractional Brownian sheet; invariance principle; long-range dependence; random field; random partition; regular variation; CENTRAL LIMIT-THEOREMS; INVARIANCE-PRINCIPLES; MOTION; URN;
D O I
10.3150/18-BEJ1025
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose discrete random-field models that are based on random partitions of N-2. The covariance structure of each random field is determined by the underlying random partition. Functional central limit theorems are established for the proposed models, and fractional Brownian sheets, with full range of Hurst indices, arise in the limit. Our models could be viewed as discrete analogues of fractional Brownian sheets, in the same spirit that the simple random walk is the discrete analogue of the Brownian motion.
引用
收藏
页码:1412 / 1450
页数:39
相关论文
共 33 条
  • [1] [Anonymous], 2007, Stat. Inference Stoch. Process
  • [2] CONVERGENCE CRITERIA FOR MULTIPARAMETER STOCHASTIC PROCESSES AND SOME APPLICATIONS
    BICKEL, PJ
    WICHURA, MJ
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (05): : 1656 - &
  • [3] Operator scaling stable random fields
    Bierme, Hermine
    Meerschaert, Mark M.
    Scheffler, Hans-Peter
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (03) : 312 - 332
  • [4] INVARIANCE PRINCIPLES FOR OPERATOR-SCALING GAUSSIAN RANDOM FIELDS
    Bierme, Hermine
    Durieu, Olivier
    Wang, Yizao
    [J]. ANNALS OF APPLIED PROBABILITY, 2017, 27 (02) : 1190 - 1234
  • [5] INVARIANCE PRINCIPLES FOR SELF-SIMILAR SET-INDEXED RANDOM FIELDS
    Bierme, Hermine
    Durieu, Olivier
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (11) : 5963 - 5989
  • [6] Billingsley P., 1968, CONVERGE PROBAB MEAS, DOI 10.1002/9780470316962
  • [7] ON THE CENTRAL LIMIT-THEOREM FOR STATIONARY MIXING RANDOM-FIELDS
    BOLTHAUSEN, E
    [J]. ANNALS OF PROBABILITY, 1982, 10 (04) : 1047 - 1050
  • [8] Dedecker, 2001, ESAIM-PROBAB STAT, V5, P77, DOI DOI 10.1051/PS:2001103.
  • [9] From infinite urn schemes to decompositions of self-similar Gaussian processes
    Durieu, Olivier
    Wang, Yizao
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
  • [10] A simple construction of the fractional Brownian motion
    Enriquez, N
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 109 (02) : 203 - 223