A network-biology perspective of microRNA function and dysfunction in cancer

被引:576
作者
Bracken, Cameron P. [1 ,2 ,3 ]
Scott, Hamish S. [1 ,2 ,3 ]
Goodall, Gregory J. [1 ,2 ,3 ]
机构
[1] Ctr Canc Biol, Adelaide, SA 5000, Australia
[2] Univ South Australia, Adelaide, SA 5000, Australia
[3] Univ Adelaide, Dept Med, Adelaide, SA 5005, Australia
基金
英国医学研究理事会;
关键词
EPITHELIAL-MESENCHYMAL TRANSITION; FEEDFORWARD REGULATORY CIRCUITS; 3' UNTRANSLATED REGIONS; NEGATIVE FEEDBACK LOOP; RNA-BINDING PROTEIN; MIR-200; FAMILY; DICER1; MUTATIONS; MESSENGER-RNAS; MAMMALIAN MICRORNAS; WIDE IDENTIFICATION;
D O I
10.1038/nrg.2016.134
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
MicroRNAs (miRNAs) participate in most aspects of cellular differentiation and homeostasis, and consequently have roles in many pathologies, including cancer. These small non-coding RNAs exert their effects in the context of complex regulatory networks, often made all the more extensive by the inclusion of transcription factors as their direct targets. In recent years, the increased availability of gene expression data and the development of methodologies that profile miRNA targets en masse have fuelled our understanding of miRNA functions, and of the sources and consequences of miRNA dysregulation. Advances in experimental and computational approaches are revealing not just cancer pathways controlled by single miRNAs but also intermeshed regulatory networks controlled by multiple miRNAs, which often engage in reciprocal feedback interactions with the targets that they regulate.
引用
收藏
页码:719 / 732
页数:14
相关论文
共 233 条
[1]   Stochastic switching as a survival strategy in fluctuating environments [J].
Acar, Murat ;
Mettetal, Jerome T. ;
van Oudenaarden, Alexander .
NATURE GENETICS, 2008, 40 (04) :471-475
[2]   Aberrant Regulation and Function of MicroRNAs in Cancer [J].
Adams, Brian D. ;
Kasinski, Andrea L. ;
Slack, Frank J. .
CURRENT BIOLOGY, 2014, 24 (16) :R762-R776
[3]   Predicting effective microRNA target sites in mammalian mRNAs [J].
Agarwal, Vikram ;
Bell, George W. ;
Nam, Jin-Wu ;
Bartel, David P. .
ELIFE, 2015, 4
[4]   MicroRNA regulation of a cancer network: Consequences of the feedback loops involving miR-17-92, E2F, and Myc [J].
Aguda, Baltazar D. ;
Kim, Yangjin ;
Piper-Hunter, Melissa G. ;
Friedman, Avner ;
Marsh, Clay B. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (50) :19678-19683
[5]  
[Anonymous], HAEMATOLOGICA
[6]  
[Anonymous], 2014, BIORESOUR BIOPROCESS
[7]   Target mRNA abundance dilutes microRNA and siRNA activity [J].
Arvey, Aaron ;
Larsson, Erik ;
Sander, Chris ;
Leslie, Christina S. ;
Marks, Debora S. .
MOLECULAR SYSTEMS BIOLOGY, 2010, 6
[8]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[9]   miEAA: microRNA enrichment analysis and annotation [J].
Backes, Christina ;
Khaleeq, Qurratulain T. ;
Meese, Eckart ;
Keller, Andreas .
NUCLEIC ACIDS RESEARCH, 2016, 44 (W1) :W110-W116
[10]   The impact of microRNAs on protein output [J].
Baek, Daehyun ;
Villen, Judit ;
Shin, Chanseok ;
Camargo, Fernando D. ;
Gygi, Steven P. ;
Bartel, David P. .
NATURE, 2008, 455 (7209) :64-U38